Please wait a minute...
Reviews in Cardiovascular Medicine  2018, Vol. 19 Issue (1): 13-19     DOI: 10.31083/j.rcm.2018.01.890
Previous articles | Next articles
Contribution of ApoCIII to Diabetic Dyslipidemia and Treatment With Volanesorsen
Jun Zhang1, Natalia de Albuquerque Rocha2, *(), Peter A. McCullough1, 3
1 Baylor University Medical Center, Baylor Heart and Vascular Institute, Dallas, TX 621 N. Hall Street, H-030, Dallas, TX 75226. USA
University of Texas Southwestern Medical Center 5323 Harry Hines Blvd, Dallas TX, 75390-8830. USA
Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX 621 N. Hall Street, H-030, Dallas, TX 75226. USA
Download:  PDF(703KB)  ( 1476 )
Export:  BibTeX | EndNote (RIS)      
Diabetic dyslipidemia in type 2 diabetes (T2DM) is characterized by elevated levels of triglycerides (TG), decreased levels of high density lipoprotein-cholesterol (HDL-C), elevated levels of low density lipoprotein-cholesterol (LDLC), and the predominance of small and dense LDL particles (sdLDL). The mechanism underlying diabetic dyslipidemia remains unclear. Insulin resistance is believed to be an important determinant. Mechanisms underlying insulin resistance-induced diabetic dyslipidemia seem to be related to apolipoprotein CIII (ApoCIII), a known inhibitor of lipoprotein lipase. The concentration of very low density lipoprotein1 (VLDL1) with a higher TG content and abundant ApoCIII was found to be significantly elevated in patients with T2DM. Recently, volanesorsen as a promising ApoIII inhibitor was shown to improve the lipid profile in patients with diabetic dyslipidemia. Herein, this paper will review recent advance in pathophysiology of diabetic dyslipidemia and the role of ApoCIII in this condition, with focus on describing a novel drug volanesorsen as potential treatment strategy.
Key words:  Apolipoprotein CIII      type 2 diabetes mellitus      diabetic dyslipidemia      high density lipoprotein-cholesterol      low density lipoprotein-cholesterol      very low density lipoprotein      volanesorsen     
Published:  30 March 2018     
*Corresponding Author(s):  Natalia de Albuquerque Rocha, E-mail:   

Cite this article: 

Jun Zhang, Natalia de Albuquerque Rocha, and Peter A. McCullough. Contribution of ApoCIII to Diabetic Dyslipidemia and Treatment With Volanesorsen. Reviews in Cardiovascular Medicine, 2018, 19(1): 13-19.

URL:     OR

[1] Adiels M, Boren J, Caslake MJ, et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1697-1703.
[2] AIM-HIGH Investigators, Boden WE, Probstfield JL, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255-2267.
[3] Arca M, Pigna G, Favoccia C. Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr Vasc Pharmacol. 2012;10:684- 686.
[4] Attman PO, Samuelsson O. Dyslipidemia of kidney disease. Curr Opin Lipiodols. 2009;20:293-299.
[5] Avall K, Ali Y, Leibger IB, et al. Apolipoprotein CIII links islet insulin resistance to β-cell failure in diabetes. Proc Natl Acad Sci USA. 2015;112:E2611-E2619.
[6] Caron S, Staels B. Apolipoprotein CIII: a link between hypertriglyceridemia and vascular dysfunction? Circ Res. 2008;103:1348-1350.
[7] Caron S, Verrijken A, Mertens I, et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2011;31:513- 519.
[8] Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs. 2013;73:327-339.
[9] Dallinga-Thie GM, Berk-Planken II, Bootsma AH, et al. Atorvastatin decreases apolipoprotein C-III in apolipoprotein B-containing lipoprotein and HDL in type 2 diabetes: a potential mechanism to lower plasma triglycerides. Diabetes Care. 2004;27:1358- 1364.
[10] Diabetes Atorvastin Lipid Intervention (DALI) Study Group. The effect of aggressive versus standard lipid lowering by atorvastatin on diabetic dyslipidemia: the DALI study: a double-blind, randomized, placebo-controlled trial in patients with type 2 diabetes and diabetic dyslipidemia. Diabetes Care. 2001;24:1335-1341.
[11] Digenio A, Dunbar RL, Alexander VJ, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39:1408-1415.
[12] Florez H, Mendez A, Casanova-Romero P, et al. Increased apolipoprotein C-III levels associated with insulin resistance contribute to dyslipidemia in normoglycemic and diabetic subjects from a triethnic population. Atherosclerosis. 2006;188:134-141.
[13] Galton DJ. Clarifying complex inheritance: apolipoprotein C3 and atherosclerosis. Curr Opin Lipidol. 2017;28:308-314.
[14] Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. Engl J Med. 2014;371:2200- 2206.
[15] Gaudet D, Alexander VJ, Baker BF, et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. N Engl J Med. 2015;373:438-447.
[16] Gaudet D, Digenio A, Alexander VJ, et al. The APPROACH study: A randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (FCS). J Clin Lipidol. 2017;11:814-815.
[17] Gervaise N, Garrigue MA, Lasfargues G, Lecomte P. Triglycerides, apoC3 and Lp B:C3 and cardiovascular risk in type II diabetes. Diabetologia. 2000;43;703-708.
[18] Gouni-Berthold I, Alexander V, Digenio A, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): A randomized, double-blind, placebocontrolled trial. J Clin Lipidol. 2017;11:794-795.
[19] Goldberg IJ. Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86:965-971.
[20] Graham MJ, Lee RG, Bell TA, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479-1490.
[21] Haynes R, Jiang L, Hopewell JC, et al. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patient of ER niacin/laropiprant: trial design, prespecified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34:1279-1291.
[22] Henriksbo BD, Lau TC, Cavallari JF, et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes. 2014;63:3742-3747.
[23] Hiukka A, Fruchart-Najib J, Leinonen E, et al. Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes. Diabetologia. 2005;48:1207-1215.
[24] HPS2-THRIVE Collaborate Group. HPS2-THRIVE randomized placebo-controlled trial in 25673 high-risk patient of ER niacin/laropiprant: trial design, prespecified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013; 34: 1279-1291.
[25] Jin JL, Guo YL, Li JJ. Apoprotein C-III: A review of its clinical implications. Clin Chim Acta. 2016;460:50-54.
[26] Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb. 2009; 16:6-11.
[27] Kei A, Liberopoulos E, Tellis K, et al. Effect of hypolipidemic treatment on emerging risk factors in mixed dyslipidemia: a randomized pilot trial. Eur J Clin Invest. 2013;43:698-707.
[28] Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G. Treatment of dyslipidemias to prevent cardiovascular disease in patients with type 2 diabetes. Curr Cardiol Rep. 2017;19:7.
[29] Koska J, Yassine H, Trenchevska O, et al. Diasylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes. J Lipid Res. 2016;57: 894-905.
[30] Luo M, Peng D. The energing role of apolipoprotein C-III: beyond effects on triglyceride metabolism. Lipids Health Dis. 2016;15:184.
[31] Mendoza S, Trenchevska O, King SM, et al. Changes in low-density lipoprotein size phenotypes associate with changes in apolipoproteins C-III glycoforms after dietary interventions. J Clin Lipidol. 2017;11: 224-233.
[32] Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150-159.
[33] Ng DS. Diabetic dyslipidemia: from evolving pathophysiological insight to emerging therapeutic targets. Can J Diabetes. 2013;37:319-326.
[34] Qamar A, Khetarpal SA, Khera AV, et al. Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics. Arterioscler Thromb Vasc Biol. 2015;35:1880-1888.
[35] Pang J, Chan DC, Hamilton SJ, et al. Effect of niacin on high-density lipoprotein apolipoprotein A-1 kinetics in statin-treated patients with type 2 diabetes mellitus. Arteriovascular Thromb Vasc Biol. 2014;34:427-432.
[36] Rjpathak SN, Kumbhani DJ, Crandall J, et al. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924-1929.
[37] Rocha NA, Bottiglieri T, East C, et al. ApoCIII as a cardiovascular risk factor and volanesorsen the novel lipid-lowering agent targeting ApoCIII. Curr Atheroscler Rep. 2017;19:62.
[38] Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomized statin trials. Lancet. 2010;375:735-742.
[39] Schofield JD, Liu Y, Rao-Balakrishna P, et al. Diabetes dyslipidemia. Diabetes Ther. 2016;7:203-219.
[40] Taskinen MR, Borèn J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239:483- 495.
[41] Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58:886-899.
[42] Visser ME, Witztum JL, Stroes ES, Kastelein JJ. Antisense oligonucleotides for the treatment of dyslipidaemia. Eur Heart J. 2012;33:1451-1458.
[43] Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63:1469-1479.
[44] Yang X, Lee SR, Choi YS, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57:706-713.
[45] Zheng C, Azcutia V, Aikawa E, et al. Statins suppress apolipoprotein CIII-induced vascular endothelial cell activation and monocyte adhesion. Eur Heart J. 2013;34:615-624.
[1] Jeremy P. Berman, Sanjum S. Sethi, Michael E. Farkouh. Strategies for Management of Stable Coronary Disease in Type 2 Diabetes Mellitus[J]. Reviews in Cardiovascular Medicine, 2013, 14(S1): 50-58.
[2] David S.H. Bell, Harshal R. Patil, James H. O'Keefe. Divergent Effects of Various Diabetes Drugs on Cardiovascular Prognosis[J]. Reviews in Cardiovascular Medicine, 2013, 14(2-4): 107-122.
[3] Norman E. Lepor, Peter A. McCullough. Best of the ACC 2010 Scientific Session[J]. Reviews in Cardiovascular Medicine, 2010, 11(3): 153-163.
[4] Barry J. Goldstein. Insulin Resistance: From Benign to Type 2 Diabetes Mellitus[J]. Reviews in Cardiovascular Medicine, 2003, 4(S6): 3-10.
No Suggested Reading articles found!