Please wait a minute...
Reviews in Cardiovascular Medicine  2019, Vol. 20 Issue (1): 9-18     DOI: 10.31083/j.rcm.2019.01.51
Review Previous articles | Next articles
Renal nerve ablation for resistant hypertension: facts, fictions and future directions
Davide Bolignano1, *(), Giuseppe Coppolino2
1 CNR Institute of Clinical Physiology, c/o EUROLINE, Via Vallone Petrara 55-57, 89124 Reggio Calabria, Italy
2 Renal Unit, Department of Health Sciences, "Magna Graecia" University, 88100 Catanzaro, Italy
Download:  PDF(833KB)  ( 1120 ) Full text   ( 61 )
Export:  BibTeX | EndNote (RIS)      
Abstract:

Hypertension remains a major public health problem and one of the most relevant causes of cardiovascular mortality and morbidity worldwide. Roughly 10% of hypertensive individuals are considered as “resistant” as they are not able to achieve and maintain optimal blood pressure values despite the concurrent use of 3 antihypertensive agents of different classes at optimal doses. As resistant hypertension conveys a higher risk of adverse outcomes, the search for effective treatments to properly manage this condition has progressively surged as a true health priority. The renal nerve plexus plays a central role in regulating arterial blood pressure and renal sympathetic overactivity is a major component in the development and progression of hypertension. On these premises, minimally-invasive catheter based devices for renal nerve ablation have been developed and tested as an alternative treatment for resistant hypertension, but clinical study results have been ambiguous. This review provides a historical perspective on the scientific evidence forming the foundation of renal never ablation from accrued clinical evidence to possible future applications, reaching a tentative conclusion that more research and clinical experience is needed to fully reveal limits and potential indications of this procedure.

Key words:  Resistant hypertension      renal denervation      renal nerve ablation     
Published:  30 March 2019     
*Corresponding Author(s):  Davide Bolignano     E-mail:  davide.bolignano@gmail.com

Cite this article: 

Davide Bolignano, Giuseppe Coppolino. Renal nerve ablation for resistant hypertension: facts, fictions and future directions. Reviews in Cardiovascular Medicine, 2019, 20(1): 9-18.

URL: 

https://rcm.imrpress.com/EN/10.31083/j.rcm.2019.01.51     OR     https://rcm.imrpress.com/EN/Y2019/V20/I1/9

Figure 1.  Contribution of the renal sympathetic system to the genesis of hypertension. Afferent fibers originating from the central nervous system targets the kidney at different tissue levels enhancing sodium and water retention, increasing renin release and decreasing renal blood flow which ultimately lead to an increased circulating volume. Efferent fibers arising from the renal pelvis conveys, in turn, sympatho-excitatory stimuli to autonomic regulatory nuclei in the midbrain leading to peripheral vasoconstriction and increased cardiac rate and output.

Figure 2.  Overview on the procedural technique of renal nerve ablation. After engagement of the femoral artery, the catheter-based device is advanced from aorta until the first segment of renal vessels and, from there, up to the established treatment zone. After ablative treatment ends (whatever the type) the procedure can be repeated in distal segments of the same renal artery with sufficient diameter to accommodate the device or in the contralateral renal artery.

Table 1  Main catheter-based devices and techniques for renal nerve ablation and highest level of clinical evidence supporting their use
Device Name (manufacturer) Technique of renal nerve ablation Highest level of evidence available
Symplicity System
(Medtronic, Minnesota, US)
Radiofrequency-generated energy delivered from a catheter-based device placed into the renal artery Multicenter, randomized, sham-controlled trials completed
Symplicity Spyral
(Medtronic, Minnesota, US)
As above but device designed with a spiral shape Multicenter, randomized, sham-controlled trials completed
OneShot system
(Medtronic, Minnesota, US; formerly Covidien)
As above -Small open-label uncontrolled study completed

-Device currently off-market
EnligHTN system
(Abbott, Illinois, US; formerly St. Jude)
As above -Two non-randomized studies completed

-Large randomized, open-label trial ongoing
Vessix System
(Boston Scientific, Massachussets, US)
As above -Non randomized study completed

-Larger sham-controlled randomized trial ongoing
Thermocool
(Biosense-Webster, California, US)
As above but saline-irrigated Small RCT (sham controlled) completed
PRDS-001 System
(Otsuka, Japan)
As above Large sham-controlled RCT ongoing
SyMapCath
(Terumo Corporation, Japan)
As above Large sham-controlled RCT ongoing
Synaptic device
(Synaptic Medical Limited, China)
As above Large sham-controlled RCT ongoing
Golden leaf catheter
(Shanghai Golden Leaf MedTec Co., China)
As above Large sham-controlled RCT ongoing
Iberis Renal Sympathetic Denervation System
(Terumo Corporation, Japan)
As above but specifically designed for radial access Large sham-controlled RCT ongoing
Paradise system
(ReCor Medical, California, US)
As above but energy is ultrasound-generated -Large randomized, double-blind, sham-controlled, study ongoing
TIVUS
(Cardiosonic, Israel)
As above but energy is ultrasound-generated - Open-label uncontrolled study completed

-Randomized, double-blind, sham-controlled, cohort study ongoing
Kona Surround Sound
(Kona Medical, Washington, US)
As above but energy is ultrasound-generated. In the second generation version, ultrasound is delivered externally - Small open-label uncontrolled study completed

-Sham-controlled randomized trial of second-generation device stopped at interim analysis due to futility
Sound 360 system
(Sound Interventions, New York, US)
As above but energy is ultrasound-generated Very limited experience
Freezor(R)Xtra
(Medtronic, Minnesota, US)
As above but energy is derived from cryotherapy -Small proof-of-concept studies completed

-Pilot, non-randomized, open-label controlled study ongoing
Bullfrog Micro-Infusion Device (Mercator MedSystems, California, US) Neurolysis induced by vincristine -Pre-clinical evidence available

- Pilot, non-randomized, open-label controlled study ongoing
Peregrine catheter
(Ablative Solutions, Michigan, US)
Nerve disruption by perivascular injection of ethanol -Pre-clinical evidence available

-Multicenter, randomized, sham-controlled trials ongoing
Table 2  Efficacy data from main randomized controlled trials on renal nerve ablation in resistant hypertension
Study ID Year Design Population characteristics Intervention Comparator Outcomes Results
Symplicity HTN-2
(Symplicity et al., 2010)
2010 Multicenter, randomized, open-label Individuals with uncontrolled hypertension aged 18-85, systolic BP≥160 (≥150 in diabetes) and ≥3 anti-hypertensive drugs Renal nerve ablation (n=53) by the Symplicity radiofrequency catheter plus standard treatment Standard treatment alone (n=54) -Office blood pressure values Blood pressure in the renal denervation group reduced by 32/12 mm Hg (SD 23/11, baseline of 178/96 mm Hg, p<0.0001) but did not differ from baseline in the control group. Between-group differences in blood pressure at 6 months were 33/11 mm Hg (p<0.0001). At 6 months, 41 (84%) of 49 patients who underwent renal denervation had a reduction in systolic blood pressure of 10 mmHg or more, compared with 18 (35%) of 51 controls (p<0.0001)
DENERHTN
(Azizi et al., 2015)
2014 Multicenter, randomized, open-label Individuals with uncontrolled hypertension aged 18-75, BP≥140/90 and ≥3 anti-hypertensive drugs including diuretic Renal nerve ablation (n=53) by the Symplicity radiofrequency catheter plus a standardized stepped-care antihypertensive treatment Standardized stepped-care antihypertensive treatment alone (n=53) -Daytime systolic ABPM Decrease of -15.8 mm Hg (95% CI -19.7 to -11.9) in the renal denervation group versus -9.9 mmHg (95% CI -13.6 to -6.2) in the control group, with a baseline-adjusted difference of -5.9 mmHg (95% CI -11.3 to -0.5; p=0.03)
PRAGUE-15
(Rosa et al., 2015)
2014 Multicenter, randomized, open-label Individuals with uncontrolled hypertension aged≥18, systolic Bp>140 and ≥3 anti-hypertensive drugs including diuretic Renal nerve ablation (n=52) by the Symplicity radiofrequency catheter Intensified treatment including spironolactone (n=54) -24h systolic ABPM

-Office systolic blood pressure
- Systolic ABPM decrease of 8.6 [95% CI -11.8, -5.3] mmHg; p<0.001 in renal denervation versus -8.1 [95% CI -12.7, -3.4] mmHg; p=0.001 in control group

- Office Systolic BP decrease of -12.4 [95% CI: -17.0, -7.8] mmHg; p<0.001 in renal denervation versus -14.3 [95% CI: -19.7, -8.9] mmHg; p<0.001 in control group

-No significant differences between groups
OSLO RDN
(Fadl Elmula et al., 2014)
2014 Single-center, randomized, open-label Individuals with uncontrolled hypertension aged 18-80, systolic Bp>140 and ≥3 anti-hypertensive drugs including diuretic Renal nerve ablation (n=9) by the Symplicity radiofrequency catheter Adjusted drug treatment (n=10) -Office blood pressure values Systolic and diastolic BP changed from 160±14/88±13 to 132±10/77±8 mmHg at 6 months (p<0.0005 and p=0.02 respectively) in the control group with no significant change in the active group. Study was prematurely stopped for futility
Symplicity HTN-3
(Bhatt et al., 2014, Bakris et al., 2014)
2015 Multicenter, randomized, patients and outcome assessors-blinded Individuals with uncontrolled hypertension aged 18-80, systolic BP≥160 and ≥3 anti-hypertensive drugs including diuretic Renal nerve ablation (n=364) by the Symplicity radiofrequency catheter plus standard treatment Sham procedure plus standard treatment (n=171) -Office systolic blood pressure

-Mean 24h ABPM

-Safety end point: composite of death, end-stage renal disease, embolic events resulting in end-organ damage, renovascular complications, or hypertensive crisis at 1 month or new renal-artery stenosis of more than 70% at 6 months
-Mean (+/-SD) change in systolic blood pressure at 6 months was -14.13+/-23.93 in the denervation group vs. -11.74+/-25.94 mmHg in the sham-procedure group (p<0.001 for both comparisons of the change from baseline; p=0.26 between-group difference).

-Change in 24h ABMP systolic blood pressure was -6.75+/-15.11 in the denervation group vs. -4.79+/-17.25 mmHg in the sham-procedure group (p=0.98 between-group difference).

-No significant differences in safety between the two group
RESET
(Mathiassen et al., 2016)
2015 Single-center, randomized, single-blinded Individuals with uncontrolled hypertension and daytime systolic ABPM≥45 mmHg following 1 month of stable medication Renal nerve ablation (n=36) by the Symplicity radiofrequency catheter Sham procedure (n=33) -Daytime systolic ABPM

-Mean usage of anti-hypertensive medications
-Similar reductions in daytime systolic ABPM compared with baseline at 3 months [-6.2 +/- 18.8 mmHg (RDN) vs. -6.0 +/- 13.5 mmHg (SHAM)] and at 6 months [-6.1 +/- 18.9 mmHg (RDN) vs. -4.3 +/- 15.1 mmHg (SHAM)].

-Mean usage of antihypertensive medication (daily defined doses) at 3 months was equal [6.8 +/- 2.7 (RDN) vs. 7.0 +/- 2.5 (SHAM)]
Symplicity-FLEX
(Desch et al., 2015)
2015 Single-center, randomized, single-blinded Individuals with uncontrolled hypertension aged 18-75 and ≥3 anti-hypertensive drugs including diuretic Renal nerve ablation (n=35) by the Symplicity radiofrequency catheter plus drug treatment Sham procedure (n=36) plus drug treatment -24h systolic ABPM Mean change in 24h systolic ABPM in the intention to treat cohort at 6 months was -7.0 mm Hg (95% CI -10.8 to -3.2) for patients undergoing denervation and -3.5 mm Hg (95% CI -6.7 to -0.2) in the sham group (p=0.15)
SPYRAL HTN-OFF MED
(Townsend et al., 2017)
2017 Multicenter, randomized, patients and outcome assessors-blinded Individuals with mild uncontrolled hypertension aged 20-80, office systolic Bp=150-180 and diastolic≥90 and 24h-systolic ABPM=140-170 Renal nerve ablation (n=38) by the Symplicity Spyral radiofrequency catheter Sham procedure (n=42) -Office blood pressure

-24h ABPM
Change in blood pressure was significantly greater at 6 months in the renal denervation group than the sham-control group for office systolic blood pressure (difference -7.7 mmHg; p=0.0205), 24h systolic ABPM (difference -5.0 mmHg; p=0.0051), office diastolic blood pressure (difference -4.9 mmHg; p=0.0478), and 24h diastolic ABPM (difference -4.4 mmHg; p=0.0292)
SPYRAL HTN-ON MED
(Kandzari et al., 2018)
2018 Multicenter, randomized, patients and outcome assessors-blinded Individuals with mild uncontrolled hypertension aged 20-80, office systolic Bp=150-180 and diastolic≥90 and 24h-systolic ABPM=140-170 Renal nerve ablation (n=38) by the Symplicity Spyral radiofrequency catheter Sham procedure (n=42) -Office blood pressure

-24h ABPM
Change in blood pressure was significantly greater at 6 months in the renal denervation group than the sham-control group for office systolic blood pressure (difference -6.8 mmHg; p=0.0205), 24h systolic ABPM (difference -7.4 mmHg; p=0.0051), office diastolic blood pressure (difference -3.5 mmHg; p=0.0478), and 24h diastolic ABPM (difference -4.1 mmHg; p=0.0292)
Azizi, M., Sapoval, M., Gosse, P., Monge, M., Bobrie, G., Delsart, P., Midulla, M., Mounier-Vehier, C., Courand, P. Y., Lantelme, P., Denolle, T., Dourmap-Collas, C., Trillaud, H., Pereira, H., Plouin, P. F., Chatellier, G ., Renal Denervation For Hypertension, I. ( 2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (Denerhtn): a multicentre, open-label, randomised controlled trial. Lancet 385, 1957-1965.
doi: 10.1016/S0140-6736(14)61942-5
Bakris, G. L., Townsend, R. R., Liu, M., Cohen, S. A., D'agostino, R., Flack, J. M., Kandzari, D. E., Katzen, B. T., Leon, M. B., Mauri, L., Negoita, M., O'neill, W. W., Oparil, S., Rocha-Singh, K., Bhatt, D. L., Investigators, S. H . ( 2014) Impact of renal denervation on 24-hour ambulatory blood pressure: results from Symplicity htn-3. Journal of the American College of Cardiology 64, 1071-1078.
doi: 10.1016/j.jacc.2014.05.012
Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, M., Knutson, K. L., Kwan, T. W., Lackland, D. T., Lewis, T. T., Lichtman, J. H., Longenecker, C. T., Loop, M. S., Lutsey, P. L., Martin, S. S., Matsushita, K., Moran, A. E., Mussolino, M. E., O'Flaherty, M., Pandey, A., Perak, A. M., Rosamond, W. D., Roth, G. A., Sampson, U. K. A., Satou, G. M., Schroeder, E. B., Shah, S. H., Spartano, N. L., Stokes, A., Tirschwell, D. L., Tsao, W., Turakhia, M. P., VanWagner, L. B., Wilkins, J. T., Wong, S. S., Virani, S. S . ( 2019) American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. heart disease and stroke statistics-2019 update: a report from the american heart association. Circulation 139, e516-e528.
Bhatt, D. L., Kandzari, D. E., O'Neill, W. W., D'Agostino, R., Flack, J. M., Katzen, B. T., Bakris, G. L . ( 2014) A Controlled Trial of renal denervation for resistant hypertension. New England Journal of Medicine 370, 1393-1401.
doi: 10.1056/NEJMoa1402670
Buhnerkempe, M. G., Botchway, A., Prakash, V., Al-akchar, M., Nolasco Morales, C. E., Calhoun, D. A., Flack, J. M . ( 2019) Prevalence of refractory hypertension in the United States from 1999 to 2014. Journal of Hypertension.
Calhoun, D. A., Jones, D., Textor, S., Goff, D. C., Murphy, T. P., Toto, R. D., White, A., Cushman, W. C., White, W., Sica, D., Ferdinand, K., Giles, T. D., Falkner, B., Carey, R. M ., American Heart Association Professional Education, C. ( 2008) Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 117, e510-e526.
Coppolino, G., Pisano, A., Rivoli, L., Bolignano, D . ( 2017) Renal denervation for resistant hypertension. Cochrane Database of Systematic Reviews 2, CD011499.
Desch, S., Okon, T., Heinemann, D., Kulle, K., Rohnert, K., Sonnabend, M., Petzold, M., Muller, U., Schuler, G., Eitel, I., Thiele, H., Lurz, P . ( 2015) Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 65, 1202-1208.
doi: 10.1161/HYPERTENSIONAHA.115.05283
Fadl Elmula, F. E., Hoffmann, P., Larstorp, A. C., Fossum, E., Brekke, M., Kjeldsen, S. E., Gjonnaess, E., Hjornholm, U., Kjaer, V. N., Rostrup, M., OS, I., Stenehjem, A., Hoieggen, A . ( 2014) Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension 63, 991-999.
doi: 10.1161/HYPERTENSIONAHA.114.03246
Fischell, T. A., Ebner, A., Gallo, S., Ikeno, F., Minarsch, L., Vega, F., Haratani, N., Ghazarossian, V. E . ( 2016) Transcatheter AlcoholMediated Perivascular Renal Denervation With the Peregrine System: First-in-Human Experience. JACC-Cardiovascular Interventions 9, 589-598.
doi: 10.1016/j.jcin.2015.11.041
Freyberg, R. H., Peet, M. M . ( 1937) The Effect on the Kidney of Bilateral Splanchnicectomy in Patients with Hypertension. Journal of Clinical Investigation 16, 49-65.
doi: 10.1172/JCI100838
GBD 2017 Risk Factor Collaborators (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923-1994.
Kandzari, D. E., Bohm, M., Mahfoud, F., Townsend, R. R., Weber, M. A., Pocock, S., Tsioufis, K., Tousoulis, D., Choi, J. W., East, C., Brar, S., Cohen, S. A., Fahy, M., Pilcher, G., Kario, K ., Investigators, S. H.-O. M. T. ( 2018) Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proofof-concept randomised trial. Lancet 391, 2346-2355.
doi: 10.1016/S0140-6736(18)30951-6
Kipshidze, N., Sievert, H., Wholey, M. H., Kipiani, K., Kipiani, V., Mukhuradze, T., Wholey, M., Stein, E., Venkateswara Rao, K. T . ( 2017) First clinical experience with targeted renal nerve demodulation (TREND-1) using a neurotropic agent for the treatment of sympathetic hypertension. Journal of Invasive Cardiology 29, 97-103.
Kiuchi, M. G., Chen, S., GR, E. S., Rodrigues Paz, L. M., Kiuchi, T., DE Paula Filho, A. G., Lima Souto, G. L . ( 2017) The addition of renal sympathetic denervation to pulmonary vein isolation reduces recurrence of paroxysmal atrial fibrillation in chronic kidney disease patients. Journal of Interventional Cardiac Electrophysiology 48, 215-222.
doi: 10.1007/s10840-016-0186-6
Kotsis, V., Stabouli, S. ( 2014) A Controlled Trial of renal denervation for resistant hypertension. New England Journal of Medicine 371, 183.
Krum, H., Schlaich, M. P., Sobotka, P. A., Bohm, M., Mahfoud, F., Rocha-Singh, K., Katholi, R., Esler, M. D . ( 2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383, 622-629.
doi: 10.1016/S0140-6736(13)62192-3
Larsen, R., Thorp, A., Schlaich, M . ( 2014) Regulation of the sympathetic nervous system by the kidney. Current opinion in nephrology and hypertension 23, 61-68.
doi: 10.1097/01.mnh.0000437610.65287.db
Linz, D., Hohl, M., Elliott, A. D., Lau, D. H., Mahfoud, F., Esler, M. D., Sanders, P., Bohm, M . ( 2018) Modulation of renal sympathetic innervation: recent insights beyond blood pressure control. Clinical Autonomic Research 28, 375-384.
doi: 10.1007/s10286-018-0508-0
Lubanda, J. C., Chochola, M., Mlcek, M., Neuzil, P., Marek, J., Havranek, S., Kuchynkova, S., Fingrova, Z., Huang, K. A., Linhart, A . ( 2017) The effect of renal denervation in an experimental model of chronic renal insufficiency, the remnant kidney denervation in pigs study. Journal of Translational Medicine 15, 215.
doi: 10.1186/s12967-017-1319-0
Mahfoud, F., Bakris, G., Bhatt, D. L., Esler, M., Ewen, S., Fahy, M., Kandzari, D., Kario, K., Mancia, G., Weber, M., Bohm, M . ( 2017) Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. European Heart Journal 38, 93-100.
Mathiassen, O. N., Vase, H., Bech, J. N., Christensen, K. L., Buus, N. H., Schroeder, A. P., Lederballe, O., Rickers, H., Kampmann, U., Poulsen, P. L., Hansen, K. W., Btker, H. E., Peters, C. D., Engholm, M., Bertelsen, J. B., Lassen, J. F., Langfeldt, S., Andersen, G., Pedersen, E. B., Kaltoft, A . ( 2016) Renal denervation in treatment-resistant essential hypertension. A randomized, SHAMcontrolled, double-blinded 24-h blood pressure-based trial. Journal of Hypertension 34, 1639-1647.
doi: 10.1097/HJH.0000000000000977
McLellan, A. J., Schlaich, M. P., Taylor, A. J., Prabhu, S., Hering, D., Hammond, L., Marusic, P., Duval, J., Sata, Y., Ellims, A., Esler, M., Peter, K., Shaw, J., Walton, A., Kalman, J. M., Kistler, P. M . ( 2015) Reverse cardiac remodeling after renal denervation: Atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm 12, 982-990.
doi: 10.1016/j.hrthm.2015.01.039
Neuzil, P., Ormiston, J., Brinton, T. J., Starek, Z., Esler, M., Dawood, O., Anderson, T. L., Gertner, M., Whitbourne, R., Schmieder, R. E . ( 2016) Externally Delivered Focused Ultrasound for Renal Denervation. JACC-Cardiovascular Interventions 9, 1292-1299.
doi: 10.1016/j.jcin.2016.04.013
Pappaccogli, M., Covella, M., Berra, E., Fulcheri, C., Di Monaco, S., Perlo, E., Burrello, J., Monticone, S., Rossato, D., Rabbia, F., Veglio, F . ( 2018) Effectiveness of Renal Denervation in Resistant Hypertension: A Meta-Analysis of 11 Controlled Studies. High Blood Pressure & Cardiovascular Prevention. 25, 167-176.
Patel, P., Gupta, P. K., White, C. M., Stanley, A. G., Williams, B., Tomaszewski, M . ( 2016) Screening for non-adherence to antihypertensive treatment as a part of the diagnostic pathway to renal denervation. Journal of Human Hypertension 30, 368-373.
doi: 10.1038/jhh.2015.103
Prochnau, D., Figulla, H. R., Surber, R . ( 2013) Cryoenergy is effective in the treatment of resistant hypertension in non-responders to radiofrequency renal denervation. International Journal of Cardiology 167, 588-590.
doi: 10.1016/j.ijcard.2012.09.224
Prochnau, D., Heymel, S., Otto, S., Figulla, H. R., Surber, R . ( 2014) Renal denervation with cryoenergy as second-line option is effective in the treatment of resistant hypertension in non-responders to radiofrequency ablation. EuroIntervention 10, 640-645.
doi: 10.4244/EIJV10I5A110
Qiu, M., Shan, Q., Chen, C., Geng, J., Guo, J., Zhou, X., Qian, W., Tang, L., Yin, Y . ( 2016) Renal sympathetic denervation improves rate control in patients with symptomatic persistent atrial fibrillation and hypertension. Acta Cardiologica 71, 67-73.
doi: 10.1080/AC.71.1.3132100
Rosa, J., Widimsky, P., Tousek, P., Petrak, O., Curila, K., Waldauf, P., Bednar, F., Zelinka, T., Holaj, R., Strauch, B., Somloova, Z., Taborsky, M., Vaclavik, J., Kocianova, E., Branny, M., Nykl, I., Jiravsky, O., Widimsky, J. R . ( 2015) Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 65, 407-413.
doi: 10.1161/HYPERTENSIONAHA.114.04019
Sanders, M. F., Reitsma, J. B., Morpey, M., Gremmels, H., Bots, M. L., Pisano, A., Bolignano, D., Zoccali, C., Blankestijn, P. J . ( 2017) Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrology Dialysis Transplantation 32, 1440-1447.
doi: 10.1093/ndt/gfx088
Schirmer, S. H., Sayed, M. M., Reil, J. C., Lavall, D., Ukena, C., Linz, D., Mahfoud, F., Bohm, M . ( 2015) Atrial remodeling following catheter-based renal denervation occurs in a blood pressureand heart rate-independent manner. JACC-Cardiovascular Interventions 8, 972-980.
doi: 10.1016/j.jcin.2015.02.014
Sievert, H., Schofer, J., Ormiston, J., Hoppe, U. C., Meredith, I. T., Walters, D. L., Azizi, M., Diaz-Cartelle, J . ( 2017) Bipolar radiofrequency renal denervation with the Vessix catheter in patients with resistant hypertension: 2-year results from the REDUCE-HTN trial. Journal of Human Hypertension 31, 366-368.
doi: 10.1038/jhh.2016.82
Stefanadis, C., Synetos, A., Toutouzas, K., Tsioufis, C., Drakopoulou, M., Tsiamis, E., Agrogiannis, G., Patsouris, E., Tousoulis, D . ( 2013a) New double balloon delivery catheter for chemical denervation of the renal artery with vincristine. International Journal of Cardiology 168, 4346-4348.
doi: 10.1016/j.ijcard.2013.05.075
Stefanadis, C., Toutouzas, K., Synetos, A., Tsioufis, C., Karanasos, A., Agrogiannis, G., Stefanis, L., Patsouris, E., Tousoulis, D . ( 2013b) Chemical denervation of the renal artery by vincristine in swine. A new catheter based technique. International Journal of Cardiology 167, 421-425.
doi: 10.1016/j.ijcard.2012.01.002
Stefanadis, C., Toutouzas, K., Vlachopoulos, C., Tsioufis, C., Synetos, A., Pietri, P., Tousoulis, D., Tsiamis, E . ( 2013c) Chemical denervation of the renal artery with vincristine for the treatment of resistant arterial hypertension: first-in-man application. Hellenic Journal of Cardiology 54, 318-321.
Symplicity, H. T. N. I., Esler, M. D., Krum, H., Sobotka, P. A., Schlaich, M. P., Schmieder, R. E., Bohm, M . ( 2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903-1909.
doi: 10.1016/S0140-6736(10)62039-9
Townsend, R. R., Mahfoud, F., Kandzari, D. E., Kario, K., Pocock, S., Weber, M. A., Ewen, S., Tsioufis, K., Tousoulis, D., Sharp, A. S. P., Watkinson, A. F., Schmieder, R. E., Schmid, A., Choi, J. W., East, C., Walton, A., Hopper, I., Cohen, D. L., Wilensky, R., Lee, D. P., Ma, A., Devireddy, C. M., Lea, J. P., Lurz, P. C., Fengler, K., Davies, J., Chapman, N., Cohen, S. A., Debruin, V., Fahy, M., Jones, D. E., Rothman, M., Bohm, M., Investigators, S. H . ( 2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390, 2160-2170.
doi: 10.1016/S0140-6736(17)32281-X
Tsioufis, C. P., Papademetriou, V., Dimitriadis, K. S., Kasiakogias, A., Tsiachris, D., Worthley, M. I., Sinhal, A. R., Chew, D. P., Meredith, I. T., Malaiapan, Y., Thomopoulos, C., Kallikazaros, I., Tousoulis, D., Worthley, S. G . ( 2015) Catheter-based renal denervation for resistant hypertension: Twenty-four month results of the EnligHTN I first-in-human study using a multi-electrode ablation system. International Journal of Cardiology 201, 345-350.
doi: 10.1016/j.ijcard.2015.08.069
Ukena, C., Mahfoud, F., Ewen, S., Bollmann, A., Hindricks, G., Hoffmann, B. A., Linz, D., Musat, D., Pavlicek, V., Scholz, E., Thomas, D., Willems, S., Bohm, M., Steinberg, J. S . ( 2016) Renal denervation for treatment of ventricular arrhythmias: data from an International Multicenter Registry. Clinical Research in Cardiology 105, 873-879.
doi: 10.1007/s00392-016-1012-y
Verheye, S., Ormiston, J., Bergmann, M. W., Sievert, H., Schwindt, A., Werner, N., Vogel, B., Colombo, A . ( 2015) Twelve-month results of the rapid renal sympathetic denervation for resistant hypertension using the OneShotTM ablation system (RAPID) study. EuroIntervention 10, 1221-1229.
doi: 10.4244/EIJY14M12_02
Waksman, R., Barbash, I. M., Chan, R., Randolph, P., Makuria, A. T., Virmani, R . ( 2013) Beta radiation for renal nerve denervation: initial feasibility and safety. EuroIntervention 9, 738-744.
doi: 10.4244/EIJV9I6A118
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., JR., Collins, K. J., Dennison Himmelfarb, C., Depalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., Maclaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., JR., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., SR., Williamson, J. D., Wright, J. T . ( 2018) ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 138, e426-e483.
[1] Davide Bolignano, Giuseppe Coppolino. Baroreflex stimulation for treating resistant hypertension: ready for the prime-time?[J]. Reviews in Cardiovascular Medicine, 2018, 19(3): 89-95.
[2] Bashar Hannawi, Homam Ibrahim, Colin M. Barker. Renal Denervation: Past, Present, and Future[J]. Reviews in Cardiovascular Medicine, 2015, 16(2): 114-124.
[3] Sabas I. Gomez, Pablo Urbandt, Nirat Beohar, Orlando Santana. Renal Denervation: Current Status and Future Applications[J]. Reviews in Cardiovascular Medicine, 2014, 15(4): 351-357.
[4] Timothy R. Larsen, Wadie David, Susan Steigerwalt, Shukri David. Primary Hyperaldosteronism Decoded: A Case of Curable Resistant Hypertension[J]. Reviews in Cardiovascular Medicine, 2012, 13(4): 203-208.
No Suggested Reading articles found!