Please wait a minute...
Reviews in Cardiovascular Medicine  2020, Vol. 21 Issue (3): 345-352     DOI: 10.31083/j.rcm.2020.03.120
Special Issue: Utilizing Technology in the COVID 19 era
Review Previous articles | Next articles
Usefulness of machine learning in COVID-19 for the detection and prognosis of cardiovascular complications
Allison Zimmerman1, Dinesh Kalra1, *()
1Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
Download:  PDF(326KB)  ( 365 ) Full text   ( 30 )
Export:  BibTeX | EndNote (RIS)      

Since January 2020, coronavirus disease 2019 (COVID-19) has rapidly become a global concern, and its cardiovascular manifestations have highlighted the need for fast, sensitive and specific tools for early identification and risk stratification. Machine learning is a software solution with the ability to analyze large amounts of data and make predictions without prior programming. When faced with new problems with unique challenges as evident in the COVID-19 pandemic, machine learning can offer solutions that are not apparent on the surface by sifting quickly through massive quantities of data and making associations that may have been missed. Artificial intelligence is a broad term that encompasses different tools, including various types of machine learning and deep learning. Here, we review several cardiovascular applications of machine learning and artificial intelligence and their potential applications to cardiovascular diagnosis, prognosis, and therapy in COVID-19 infection.

Key words:  COVID-19      artificial intelligence      machine learning      cardiovascular     
Submitted:  28 June 2020      Revised:  06 September 2020      Accepted:  08 September 2020      Published:  30 September 2020     
*Corresponding Author(s):  Dinesh K. Kalra     E-mail:

Cite this article: 

Allison Zimmerman, Dinesh Kalra. Usefulness of machine learning in COVID-19 for the detection and prognosis of cardiovascular complications. Reviews in Cardiovascular Medicine, 2020, 21(3): 345-352.

URL:     OR

Table 1.  Summary of the literature for cardiac acute myocardial injury in COVID19
StudyNStudy DesignFindings
Guo et al., 2020187Case series 52 patients suffered acute myocardial injury with a mean CK-MB fraction of 3.34 ng/ml and mean myoglobin of 128.7 μg/ml. 8 patients (4.3%) developed cardiomyopathy with a mean troponin T level of 15.4 pg/ml and mean NT-proBNP of 817.4 pg/ml
Arentz et al., 202021Case series 7 patients (33%) developed cardiomyopathy
Zhou et al., 2020191Retrospective cohort 44 patients (23%) developed heart failure. 33 (17%) had acute cardiac injury with 24 patients having a hs-Troponin I level of > 28 pg/ml
Puntmann et al., 2020100Prospective cohort 78% of patients who had recently recovered from COVID had abnormal CMR findings and ongoing inflammation was seen in 60% of patients
Li et al., 20201527Meta-analysis 122 patients (8%) showed signs of cardiac injury
Huang et al., 202041Case series 5 patients (12%) were diagnosed with acute myocardial injury with an increased troponin I level > 28 pg/ml
Wang et al., 2020138Case series 16.7% of patients developed arrhythmia and 7.2% experienced acute cardiac injury
Shi et al., 2020416Prospective cohort 82 patients (19.7%) developed cardiac injury
Table 3.  Clinical trials on COVID-19 and the CV system using artificial intelligence
Study (year)NPrimary outcome measuresLocationStatus
QT-Logs: a Clinical Study to Monitor Cardiac Safety, With Artificial Intelligence for QT Interval Analysis of ECG Data From Smartwatches, in Patients Receiving Hydroxychloroquine Treatment for COVID-19 (2020) (Assistance Publique Hopitaux De Marseille., 2020)100Measurement of QTc using an artificial intelligence (AI)-based solution and ECG data collected via smartwatches, compare to standard 12 leads EKG reviewed by cardiologist Assistance Publique Hôpitaux de Marseille, France Complete
CARDICoVRISK:Cardiovascular Risk in COVID-19 Patients: Metabolic, Prothrombotic and Proinflammatory Mechanisms Associated with Outcome and with Cardiorespiratory Features During the Acute Viral Disease and at Short Term Follow-up (2020) (Parati, 2020)5500To Identify the clinical, immunological, inflammatory, viral, cardiorespiratory consequences of COVD-19 that may persist a few months after discharge and may affect mid- and long-term prognosis Istituto Auxologico Italiano Milan, Italy Not yet recruiting
Coviva: Coronavirus Disease-19 Survival - The COVIVA Study (Twerenbold and Pfister, 2020)1500i) perform extensive clinical and biomarker phenotyping in COVID-19 suspects presenting to the emergency department (ED) and in COVID-19 patients with subsequent ICU admission, ii) compare clinical and biomarker profiles of COVID-19 patients with a control group, iii) derive and validate personalized risk prediction models for early clinical decision support, and iv) explore pathophysiological mechanisms including inflammatory and CV pathways. University Hospital Basel Basel, Switzerland Recruiting
Table 4.  Diagnostic tests in patients with COVID-19 and cardiovascular involvement
TestDiagnostic considerations in COVID19 patients
NT-pro BNP/BNP Frequently elevated in patients with COVID-19 even in the absence of clinical heart failure or elevated filling pressures and associated with unfavorable course among patients with ARDS. Should not trigger evaluation for heart failure unless there is clinical evidence per ACC guidelines.
Troponin May be helpful in risk assessment in patients requiring ICU level care and can be an indicator of myocardial injury. Should be considered if the diagnosis of MI is being considered on clinical grounds per ACC guidelines.
Procalcitonin A marker of bacterial infection. Reports from Wuhan demonstrated an association between elevation in its levels with cardiac injury and requiring ICU care
IL-6 High concentrations associated with worse outcome
Complete blood count Acute cardiac injury and higher mortality are associated with lymphopenia and thrombocytopenia
EKG Dynamic ischemic appearing changes when there is myocardial involvement
Echocardiography May show hyperdynamic changes in the early stages, and global or regional systolic and diastolic dysfunction later on. Stress cardiomyopathy like wall motion abnormalities and pericardial effusion may occur.
CMR Patients often show lower LVEF, higher left ventricular volumes, higher left ventricular mass, raised native T1 and T2 values, late gadolinium enhancement (LGE). Likely useful in monitoring the long-term CV consequences of COVID-19
Cardiac CT May be helpful in the setting of elevated troponin when CAD needs to be ruled out noninvasively.
[1] Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., Pandey, M., Maliakal, G., van Rosendael, A. R., Beecy, A. N., Berman, D. S., Leipsic, J., Nieman, K., Andreini, D., Pontone, G., Schoepf, U. J., Shaw, L. J., Chang, H., Narula, J., Bax, J. J., Guan, Y. and Min, J. K. (2019) Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal 40, 1975-1986.
[2] Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. F. and van der Schaar, M. (2019) Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. Plos one 14, e0213653.
[3] Alhogbani, T. (2016) Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Annals of Saudi Medicine 36, 78-80.
[4] Alsharqi, M., Woodward, W. J., Mumith, J. A., Markham, D. C., Upton, R. and Leeson, P. (2018) Artificial intelligence and echocardiography. Echo Research and Practice 161, R115-R125.
[5] Arentz, M., Yim, E., Klaff, L., Lokhandwala, S., Riedo, F. X., Chong, M. and Lee, M. (2020) Characteristics and outcomes of 21 Critically Ill patients with COVID-19 in Washington State. JAMA 323, 1612.
[6] Assistance Publique Hopitaux De Marseille. (2020) QT-Logs: Artificial Intelligence for QT interval analysis of ECG from smartwatches in patient receiving treatment for Covid-19 (QT-Logs). Available at: (Accessed: June 4, 2020).
[7] Attia, Z. I., Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel, DeSimone, C. V., Dillon, J. J., Sapir, Y., Somers, V. K., Dugan, J. L., Bruce, C. J., Ackerman, M. J., Asirvatham, S. J., Striemer, B. L., Bukartyk, J., Scott, C. G., Bennet, K. E., Ladewig, D. J., Gilles, E. J., Sadot, D., Geva, A. B. and Friedman, P. A. (2016) Novel bloodless potassium determination using a signal-processed single-lead ECG. Journal of the American Heart Association 5, e002746.
[8] Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M., Ladewig, D. J., Satam, G., Pellikka, P. A., Enriquez-Sarano, M., Noseworthy, P. A., Munger, T. M., Asirvatham, S. J., Scott, C. G., Carter, R. E. and Friedman, P. A. (2019) Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine 25, 70-74.
[9] Betancur, J., Commandeur, F., Motlagh, M., Sharir, T., Einstein, A. J., Bokhari, S., Fish, M. B., Ruddy, T. D., Kaufmann, P., Sinusas, A. J., Miller, E. J., Bateman, T. M., Dorbala, S., Di Carli, M., Germano, G., Otaki, Y., Tamarappoo, B. K., Dey, D., Berman, D. S. and Slomka, P. J. (2018) Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT. JACC: Cardiovascular Imaging 11, 1654-1663.
[10] Betancur, J., Rubeaux, M., Fuchs, T. A., Otaki, Y., Arnson, Y., Slipczuk, L., Benz, D. C., Germano, G., Dey, D., Lin, C., Berman, D. S., Kaufmann, P. A. and Slomka, P. J. (2017) Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. Journal of Nuclear Medicine 58, 961-967.
[11] Bin, S. Y., Heo, J. Y., Song, M., Lee, J., Kim, E., Park, S., Kwon, H., Kim, S. M., Kim, Y., Si, Y., Lee, I., Baek, Y. H., Choi, W., Min, J., Jeong, H. W. and Choi, Y. K. (2016) Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clinical Infectious Diseases 62, 755-760.
[12] Brauner, S., Jiang, X., Thorlacius, G. E., Lundberg, A. M., Östberg, T., Yan, Z., Kuchroo, V. K., Hansson, G. K. and Wahren-Herlenius, M. (2018) Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovascular Research 114, 158-167.
[13] Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G. and Wang, W. (2020) Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discovery 6, 11.
[14] Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Hu, S., Wang, Y., Hu, X., Zheng, B., Zhang, K., Wu, H., Dong, Z., Xu, Y., Zhu, Y., Chen, X., Yu, L. and Yu, H. (2020) Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv (in press).
[15] Chen, L., Li, X., Chen, M., Feng, Y. and Xiong, C. (2020) The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular Research 116, 1097-1100.
[16] DAIC. (2020) Mayo clinic uses artificial intelligence to help assess cardiac danger from COVID-19. Diagnostic and Interventional Cardiology. Available at: (Accessed: May 19, 2020).
[17] Dey, D., Diaz Zamudio, M., Schuhbaeck, A., Juarez Orozco, L. E., Otaki, Y., Gransar, H., Li, D., Germano, G., Achenbach, S., Berman, D. S., Meave, A., Alexanderson, E. and Slomka, P. J. (2015) Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: a pilot study. Circulation. Cardiovascular Imaging 8, e003255.
[18] Fang, L., Karakiulakis, G. and Roth, M. (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine 8, e21.
[19] Gandhi, R. T., Lynch, J. B. and del Rio, C. (2020) Mild or moderate Covid-19. New England Journal of Medicine (in press).
[20] Garcia, E. V., Klein, J. L., Moncayo, V., Cooke, C. D., Del’Aune, C., Folks, R., Moreiras, L. V. and Esteves, F. (2018) Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging. Journal of Nuclear Cardiology (in press).
[21] Gozes, O., Frid-Adar, M., Greenspan, H., Patrick, D., Zhang, H., Ji, W., Bernheim, A. and Siegel, E. (2020) Rapid AI development cycle for the Coronavirus ( COVID-19 ) pandemic : initial results for automated detection & patient monitoring using deep learning CT image analysis. arXiv (in press).
[22] Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., et al. (2020) Clinical characteristics of Coronavirus disease 2019 in China. New England Journal of Medicine 382, 1708-1720.
[23] Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X. and Lu, Z. (2020) Cardiovascular implications of fatal outcomes of patients with Coronavirus disease 2019 (COVID-19). JAMA Cardiology 5, 811.
[24] Guzik, T. J., Mohiddin, S. A., Dimarco, A., Patel, V., Savvatis, K., Marelli-Berg, F. M., Madhur, M. S., Tomaszewski, M., Maffia, P., D’Acquisto, F., Nicklin, S. A., Marian, A. J., Nosalski, R., Murray, E. C., Guzik, B., Berry, C., Touyz, R. M., Kreutz, R., Wang, D. W., Bhella, D., Sagliocco, O., Crea, F., Thomson, E. C. and McInnes, I. B. (2020) COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research 116, 1666-1687.
[25] Hackler, E., Lew, J., Gore, M. O., Ayers, C. R., Department of Clinical Sciences UT Southwestern Medical Center Dallas TX, Atzler, D., Khera, A., Rohatgi, A., Lewis, A., Neeland, I., Omland, T., University of Oslo Norway and de Lemos, J. A. (2019) Racial differences in cardiovascular biomarkers in the general population. Journal of the American Heart Association 8, e012729.
[26] Hagiwara, Y., Fujita, H., Oh, S. L., Tan, J. H., Tan, R. S., Ciaccio, E. J. and Acharya, U. R. (2018) Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review. Information Sciences 467, 99-114.
[27] Ho, D. S. W., Schierding, W., Wake, M., Saffery, R. and O’Sullivan, J. (2019) Machine learning SNP based prediction for precision medicine. Frontiers in Genetics 10, 267.
[28] Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J. and Cao, B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395, 497-506.
[29] Huber, S. A., Sakkinen, P., Conze, D., Hardin, N. and Tracy, R. (1999) Interleukin-6 Exacerbates Early Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology 19, 2364-2367.
[30] Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E. and Dudley, J. T. (2018) Artificial Intelligence in Cardiology. Journal of the American College of Cardiology 71, 2668-2679.
[31] Kusters, P. J. H., Lutgens, E. and Seijkens, T. T. P. (2018) Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovascular Research 114, 368-377.
[32] Kwon, J., Lee, Y., Lee, Y., Lee, S. and Park, J. (2018) An algorithm based on deep learning for predicting in-hospital cardiac arrest. Journal of the American Heart Association 7, e008678.
[33] Lefferts, W. K., Augustine, J. A., Spartano, N. L., Atallah-Yunes, N. H., Heffernan, K. S. and Gump, B. B. (2017) Racial differences in aortic stiffness in children. The Journal of Pediatrics 180, 62-67.
[34] Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z. and Zhao, Y. (2020) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology 109, 531-538.
[35] Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J. and Xia, J. (2020) Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 296, E65-E71.
[36] Lopez-Jimenez, F., Attia, Z., Arruda-Olson, A. M., Carter, R., Chareonthaitawee, P., Jouni, H., Kapa, S., Lerman, A., Luong, C., Medina-Inojosa, J. R., Noseworthy, P. A., Pellikka, P. A., Redfield, M. M., Roger, V. L., Sandhu, G. S., Senecal, C. and Friedman, P. A. (2020) Artificial intelligence in cardiology: present and future. Mayo Clinic Proceedings 95, 1015-1039.
[37] Metsky, H. C., Freije, C. A., Kosoko-Thoroddsen, T.-S. F., Sabeti, P. C. and Myhrvold, C. (2020) CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design. bioRxiv (in press).
[38] Neri, E., Miele, V., Coppola, F. and Grassi, R. (2020) Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology. La Radiologia Medica 125, 505-508.
[39] Ngo, T. A., Lu, Z. and Carneiro, G. (2017) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analysis 35, 159-171.
[40] Nguyen, J. L., Yang, W., Ito, K., Matte, T. D., Shaman, J. and Kinney, P. L. (2016) Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiology 1, 274.
[41] Nishihara, M., Aoki, H., Ohno, S., Furusho, A., Hirakata, S., Nishida, N., Ito, S., Hayashi, M., Imaizumi, T. and Fukumoto, Y. (2017) The role of IL-6 in pathogenesis of abdominal aortic aneurysm in mice. Plos one 12, e0185923.
[42] Parati, G. (2020) Predictors of cardiovascular risk in Covid-19 patients during acute disease and at short term follow-up (CARDICoVRISK). Available at: (Accessed: May 1, 2020).
[43] Peng, Q., Chinese Critical Care Ultrasound Study Group (CCUSG), Wang, X. and Zhang, L. (2020) Using echocardiography to guide the treatment of novel coronavirus pneumonia. Critical Care 24, 143.
[44] Puntmann, V. O., Carerj, M. L., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., Shchendrygina, A., Escher, F., Vasa-Nicotera, M., Zeiher, A. M., Vehreschild, M. and Nagel, E. (2020) Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from Coronavirus disease 2019 (COVID-19). JAMA Cardiology (in press).
[45] Ruan, Q., Yang, K., Wang, W., Jiang, L. and Song, J. (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine 46, 846-848.
[46] Sarwar, N., Butterworth, A. S., Freitag, D. F., Gregson, J., Willeit, P., Gorman, D. N., Gao, P., Saleheen, D., Rendon, A., Nelson, C. P., et al. (2012) Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet (London, England) 379, 1205-1213.
[47] Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y. and Shen, D. (2020) Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering (in press).
[48] Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q., Huang, H., Yang, B. and Huang, C. (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology 5, 802.
[49] Stempniak, M. (2020) Machine learning uses imaging to predict heart damage in COVID-19 patients. Radiology Business News. Available at: (Accessed: May 18, 2020).
[50] Tao, Q., Yan, W., Wang, Y., Paiman, E. H. M., Shamonin, D. P., Garg, P., Plein, S., Huang, L., Xia, L., Sramko, M., Tintera, J., de Roos, A., Lamb, H. J. and van der Geest, R. J. (2019) Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study. Radiology 290, 81-88.
[51] Tison, G. H., Sanchez, J. M., Ballinger, B., Singh, A., Olgin, J. E., Pletcher, M. J., Vittinghoff, E., Lee, E. S., Fan, S. M., Gladstone, R. A., Mikell, C., Sohoni, N., Hsieh, J. and Marcus, G. M. (2018) Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiology 3, 409.
[52] Twerenbold, R. and Pfister, K. G. (2020) COVID-19 Survival - The COVIVA Study (COVIVA). Clinical Trials. Available at: (Accessed: May 4, 2020).
[53] van der Heijden, C. D. C. C., Deinum, J., Joosten, L. A. B., Netea, M. G., Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany and Riksen, N. P. (2018) The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovascular Research 114, 944-953.
[54] Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X. and Peng, Z. (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069.
[55] Wang, H., Li, W., Hou, C., Lai, S., Zhang, Y., Tian, C., Yang, H., Du, J. and Li, H. (2019) CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice. Cardiovascular Research 115, 83-93.
[56] Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. and Cao, B. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England) 395, 1054-1062.
[57] Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., Zheng, X.-S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., Zhan, F.-X., Wang, Y.-Y., Xiao, G.-F. and Shi, Z.-L. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.
[1] Niloofar Deravi, Mobina Fathi, Kimia Vakili, Shirin Yaghoobpoor, Marzieh Pirzadeh, Melika Mokhtari, Tara Fazel, Elahe Ahsan, Samad Ghaffari. SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: a systematic review[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 385-397.
[2] Ramesh K. Goyal, Jaseela Majeed, Rajiv Tonk, Mahaveer Dhobi, Bhoomika Patel, Kalicharan Sharma, Subbu Apparsundaram. Current targets and drug candidates for prevention and treatment of SARS-CoV-2 (COVID-19) infection[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 365-384.
[3] Jun Zhang, Kristen M. Tecson, Peter A. McCullough. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 315-319.
[4] Jun Zhang, Peter A. McCullough, Kristen M. Tecson. Vitamin D deficiency in association with endothelial dysfunction: Implications for patients with COVID-19[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 339-344.
[5] Radwan Al Ali, Davor Vukadinović, Wasim Maziak, Lama Katmeh, Viktoria Schwarz, Felix Mahfoud, Ulrich Laufs, Michael Böhm. Cardiovascular effects of waterpipe smoking: a systematic review and meta-analysis[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 453-468.
[6] Ajay K. Mahenthiran, Ashorne K. Mahenthiran, Jo Mahenthiran. Cardiovascular system and COVID-19: manifestations and therapeutics[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 399-409.
[7] Kimia Vakili, Mobina Fathi, Aiyoub Pezeshgi, Ashraf Mohamadkhani, Mohammadreza Hajiesmaeili, Mostafa Rezaei-Tavirani, Fatemeh Sayehmiri. Critical complications of COVID-19: A descriptive meta-analysis study[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 433-442.
[8] Matteo Cameli, Maria Concetta Pastore, Michael Henein, Hatem Soliman Aboumarie, Giulia Elena Mandoli, Flavio D'Ascenzi, Paolo Cameli, Federico Franchi, Sergio Mondillo, Serafina Valente. Safe performance of echocardiography during the COVID-19 pandemic: a practical guide[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 217-223.
[9] Gayatri Setia, Jeffrey Tyler, Alan Kwan, Josh Faguet, Shilpa Sharma, Siddharth Singh, Babak Azarbal, Rose Tompkins, Dinora Chinchilla, Sara Ghandehari. High thrombus burden despite thrombolytic therapy in ST-elevation myocardial infarction in a patient with COVID-19[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 289-295.
[10] Peter A. McCullough, John Eidt, Janani Rangaswami, Edgar Lerma, James Tumlin, Kevin Wheelan, Nevin Katz, Norman E. Lepor, Kris Vijay, Sandeep Soman, Bhupinder Singh, Sean P. McCullough, Haley B. McCullough, Alberto Palazzuoli, Gaetano M. Ruocco, Claudio Ronco. Urgent need for individual mobile phone and institutional reporting of at home, hospitalized, and intensive care unit cases of SARS-CoV-2 (COVID-19) infection[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 1-7.
[11] María M. Adeva-Andany, Carlos Fernández-Fernández, Natalia Carneiro-Freire, Elvira Castro-Quintela, Ana Pedre-Piñeiro, Mónica Seco-Filgueira. Insulin resistance underlies the elevated cardiovascular risk associated with kidney disease and glomerular hyperfiltration[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 41-56.
[12] Michele Provenzano, Giuseppe Coppolino, Teresa Faga, Carlo Garofalo, Raffaele Serra, Michele Andreucci. Epidemiology of cardiovascular risk in chronic kidney disease patients: the real silent killer[J]. Reviews in Cardiovascular Medicine, 2019, 20(4): 209-220.
[13] Girish Singhania, Abutaleb A. Ejaz, Peter A. McCullough, Aaron Y. Kluger, Saravanan Balamuthusamy, Bhagwan Dass, Namrata Singhania, Adhish Agarwal. Continuation of Chronic Heart Failure Therapies During Heart Failure Hospitalization - a Review[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 111-120.
[14] Shanna J. Hardin, Mahavir Singh, Wintana Eyob, Jack C. Molnar, Rubens P. Homme, Akash K. George, Suresh C. Tyagi. Diet-induced chronic syndrome, metabolically transformed trimethylamine-N-oxide, and the cardiovascular functions[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 121-128.
[15] Wenyan Jiang, Mei Wang. New insights into the immunomodulatory role of exosomes in cardiovascular disease[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 153-160.
No Suggested Reading articles found!