Please wait a minute...
Reviews in Cardiovascular Medicine  2020, Vol. 21 Issue (3): 453-468     DOI: 10.31083/j.rcm.2020.03.135
Systematic Review Previous articles | Next articles
Cardiovascular effects of waterpipe smoking: a systematic review and meta-analysis
Radwan Al Ali1, *(), Davor Vukadinović1, Wasim Maziak2, Lama Katmeh1, Viktoria Schwarz1, Felix Mahfoud1, Ulrich Laufs3, Michael Böhm1
1Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany
2Robert Stempel College of Public Health, Florida International University, Miami, Florida 33174, USA
3Klinik und Poliklinik für Kardiologie, Universitätsklinikum, Liebigstr. 20, 04103 Leipzig, Germany
Download:  PDF(2538KB)  ( 488 ) Full text   ( 35 )
Export:  BibTeX | EndNote (RIS)      
Abstract:

Waterpipe smoking has developed into a major and rapidly growing global tobacco epidemic affecting more than 100 million people worldwide. This study identifies and analyzes comprehensively all available data on the cardiovascular effects of waterpipe smoking. Databases PubMed, EMBASE, Web of Science, and the Cochrane Library were searched for studies published until December 2019 assessing cardiovascular effects of waterpipe smoking. We included experimental, cohort, cross-sectional and case-control studies and excluded systematic reviews, case reports/series and qualitative studies. Studies not conducted in humans or not distinguishing waterpipe smoking from other forms of smoking were also excluded. A total of 42 studies with 46 cardiovascular parameters were eligible for analysis. The meta-analysis included 31 studies with 38,037 individuals. Results showed that one waterpipe smoking session leads to immediate increases in heart rate and blood pressure (P < 0.001). Compared to non-smokers, waterpipe smokers had significantly lower high-density lipoprotein levels (P < 0.001), higher levels of low-density lipoprotein (P = 0.04), triglyceride (P < 0.001) and fasting blood glucose (P = 0.03) and higher heart rate (P = 0.04) with a tendency to have higher blood pressure. Mean heart rate, blood pressure and lipids levels did not differ between waterpipe and cigarette smokers, except for total cholesterol, being higher among waterpipe smokers (P < 0.001). Current level of evidence suggests that waterpipe smoking is associated with substantial adverse effects on cardiovascular system, which seem to be similar to those of cigarette smoking. Longitudinal studies are required to scrutinize the magnitude of these effects.

Key words:  Waterpipe      smoking      cardiovascular disease      cardiovascular risk factors     
Submitted:  14 July 2020      Revised:  09 September 2020      Accepted:  12 September 2020      Published:  30 September 2020     
*Corresponding Author(s):  Radwan Al Ali     E-mail:  radwan.al-ali@uks.eu

Cite this article: 

Radwan Al Ali, Davor Vukadinović, Wasim Maziak, Lama Katmeh, Viktoria Schwarz, Felix Mahfoud, Ulrich Laufs, Michael Böhm. Cardiovascular effects of waterpipe smoking: a systematic review and meta-analysis. Reviews in Cardiovascular Medicine, 2020, 21(3): 453-468.

URL: 

https://rcm.imrpress.com/EN/10.31083/j.rcm.2020.03.135     OR     https://rcm.imrpress.com/EN/Y2020/V21/I3/453

Fig. 1.  PRISMA Flow diagram showing the process of the sytematic search and study selection including eligibility against the inclusion and exclusion criteria. The number of studies is the bottom of the flowchart represents that of the selected studies that were considered eligible for inclusion in this meta-analysis.

Fig. 2.  Forest plots demonstrating individual (squares) and pooled (rhombus) acute changes (mean difference) in heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP), with corresponding 95% confidence intervals (horizontal lines), obtained after one waterpipe smoking session. WPS: Waterpipe smoking

Table 1.  Study Characteristics.
Study Study design Sampling Participants N Male Age, years Mean ± SD (range) WPS CS NS Pre-session abstinence WPS session, min. Smoking setting Tobacco used
Total Exclusive Frequency
Experimental studies
Al-Kubati et al., 2006 One-Group Pretest-Posttest Convenience sampling Healthy subjects 20 20 27.2 ± 6.4 (20-40) 20 n.s. n.s. - - 12 h 45 Laboratory 5 g moassal
Alomari et al., 2014 One-Group Pretest-Posttest Convenience sampling Healthy subjects 53 34 22.7 ± 4.8 (18-35) 53 n.s. 3 WP/week - - n.s. 30 A well-ventilated room 10 g flavoured tobacco
Azar et al., 2016 Three-Group Pretest-Posttest Convenience sampling Healthy subjects 194 112 35.6 (> 18) 101 n.s. n.s. - 42 12 h 15 Restaurants n.s.
Bentur et al.,2014 Two-Group Pretest-Posttest Convenience sampling Healthy subjects 62 33 24.9 ± 6.2 ( 18) 47 n.s. n.s. - - 24 h 30 Indoor environment 10 g moassal
Blank et al.,2011 One-Group Pretest-Posttest, Two-condition crossover Convenience sampling Healthy subjects 37 29 20.5 ± 2.1 (18-50) 37 ≤ 5 cig/month 2-5 WP/month - - Overnight 45 Laboratory 10 g flavoured tobacco
Cobb et al.,2011 One-Group Pretest-Posttest, Two-condition crossover Convenience sampling Healthy subjects 54 36 21.2 ± 2.3 (18-50) 54 5 cig/day 2 WP/month 54 - 12 h 43.3 (CS 6.1) Laboratory n.s.
Cobb et al.,2012 One-Group Pretest-Posttest, Two-condition crossover Convenience sampling Healthy subjects 32 16 21.6 ± 2.7 (18-50) 32 ≤ 5 cig/month 4 WP/month 32 - 12 h 45 Laboratory 10 g flavoured tobacco
Eissenberg and Shihadeh,2009 One-Group Pretest-Posttest, Two-condition crossover Voluntary response sampling Healthy subjects 31 21 21.4 ± 2.3 (18-50) 31 1 cig/week 1 WP/month 31 - 12 h 45 (CS 5) Laboratory 15 g flavoured tobacco
Elias et al.,2012 Two-Group Pretest-Posttest Convenience sampling Healthy subjects 100 n.s. 29.5 ± 10.4 (18-60) 70 70 weekly WPS, (6.9 ± 3.7) - 30 n.s. 30 n.s. n.s.
Hakim et al.,2011 One-Group Pretest-Posttest Convenience sampling Healthy subjects 45 30 32.3 ± 23.4 (18.3-65.1) 45 37 Regularly - - 24 h 30 An outdoor environment. 10 g moassal
Hawari et al.,2013 One-Group Pretest-Posttest Convenience sampling Healthy subjects 24 24 20.4 (18-25) 24 n.s. 4 (0.5-14) WP/week - - 48 h 45 Laboratory n.s.
Kadhum et al.,2014 One-Group Pretest-Posttest Convenience sampling Healthy subjects 61 49 (18-25) 61 61 n.s. - - 24 h 45-90 Cafes n.s.
Layoun et al.,2014 Three-Group Pretest-Posttest Convenience sampling n.s. 132 87 33.4 ( 18) 42 42 1WP/week 48 42 n.s. 45 Restaurants 20 g moassal
Nelson et al.,2016 One-Group Pretest-Posttest Convenience sampling Healthy subjects 28 20 27 ± 5 (17-39) 28 28 ¿ 12 times in the past year - - 72 h 30 (102 ± 60) Laboratory n.s.
Rezk-Hanna et al.,2019 Two-Group Pretest-Posttest Voluntary response sampling Healthy subjects 55 10 26 ± 1 (18-34) 40 40 12 times in the past year 15 - Overnight 96 ± 40 (60-120) Laboratory n.s.
Shafagoj and Mohammed,2002 One-Group Pretest-Posttest Convenience sampling Healthy subjects 18 18 27 ± 8 (20-45) 18 18 3 times/week - - 84 h 45 Laboratory 20 g moassal
Shaikh et al.,2008 One-Group Pretest-Posttest Cluster sampling Healthy subjects 202 202 33.2 (¿ 17) 202 202 n.s. - - 20 min 30-45 Café n.s.
Shishani et al.,2014 One-Group Pretest-Posttest Two-condition crossover Voluntary response sampling Healthy subjects 22 n.s. 23 ± 3.1 (18-30) 22 22 10 times in the past year, and ≤ 2 times/week in the past 3 months - - 24 h 45–60 Outdoor laboratory n.s.
Wolfram et al.,2003 One-Group Pretest-Posttest Convenience sampling Healthy subjects 7 7 18 7 7 occasionally - - 3 months 55 (45-70) Laboratory 15 g of tobacco
Case-control studies
Al-Amri et al.,2019 Case-control hospital-based Convenience sampling Cases are myocardial infarction, controls from dermatology and surgery departments 296 203 47.8 ± 14.6 ( 18) 35 35 Daily 89 261 n.s. - - n.s.
Al-Numair et al.,2007 Case-control Convenience sampling Healthy subjects 200 200 (19-50) 100 100 Daily - 100 n.s. - - ma’ssel
Chami et al.,2019 Case-control community-based Convenience and voluntary response sampling Healthy subjects 345 233 53.7 ± 9.1 ( 35) 175 98% Daily - 170 n.s. - - n.s.
Chwyeed,2018 Case-control Randomly selection Healthy subjects 75 75 (30-60) 20 20 n.s. 20 35 n.s. - - n.s.
Diab et al.,2015 Case-control Convenience sampling Healthy subjects 77 77 35.1 ± 1.05 (≤ 60) 30 30 Daily 30 17 n.s. - - n.s.
Ghasemi et al.,2010 Case-control community-based Convenience sampling Healthy subjects 54 54 33.3 ± 2.94 27 27 Daily - 27 n.s. - - mostly of moassal
Hashem Sezavar et al.,2004 Case-control community-based Convenience sampling n.s. 450 450 (20-75) 150 150 Daily 150 150 n.s. - - n.s.
Jabbour et al.,2003 Case-control hospital-based Convenience sampling Cases are CHD patients, controls recruited from 3 hospitals 525 n.s. n.s. 49 n.s. ¿ 4/week - 299 n.s. - - n.s.
Koubaa et al.,2015a Case-control community-based Convenience sampling Healthy subjects 43 43 43.6 ± 2.2 14 14 5 WP-year 15 14 n.s. - - 10 and 25 g
Koubaa et al.,2015b Case-control community-based Convenience sampling Healthy subjects 43 43 43.6 ± 2.2 14 14 5 WP-year 15 14 n.s. - - 10 and 25 g
Muddathir et al.,2018 Case-control Convenience sampling Healthy subjects 120 80 29.2 (18-51) 40 40 Daily 40 40 n.s. - - n.s.
Selim et al.,2013a Case-control community-based Convenience sampling Healthy subjects 70 63 28.7 (25-35) 30 30 Daily 30 10 n.s. - - n.s.
Cross-sectional/cohort studies
Al Suwaidi et al.,2012 Cross-sectional prospective hospital-based cohort Convenience sampling ACS patients 7930 6253 59.6 130 130 Regular 3605 3742 - - - n.s.
Al-Safi et al.,2009 Cross-sectional population-based Stratified cluster random sampling Healthy subjects 14310 7400 31.4 ( 18) 2272 1132 1 WP/week 2691 9347 n.s. - - n.s.
Islami et al.,2013 Cross-sectional prospective population-based cohort Systematic clustering random sampling Cases: participants with heart disease history, Controls: participants with no heart disease history 50045 21234 (40-75) 525 n.s. Ever - 49489 n.s. - - n.s.
Khan et al.,2020 Cross-sectional community-based Voluntary response sampling Healthy subjects 73 41 39.8 (21-65) 12 12 Daily 26 25 n.s. - - n.s.
57 27 25.4 33 33 1 WP/month 24 n.s. - - n.s.
Platt et al.,2017 Cross-sectional hospital-based Convenience sampling Coronary angiography patients 7705 5188 61.2 ± 11.4 574 574 Regularly 2625 4506 n.s. - - n.s.
Saffar Soflaei et al.,2018 Cross-sectional population-based Stratified cluster random sampling - 9690 n.s. (35-65) 1067 1067 n.s. 864 6742 n.s. - - n.s.
Selim et al.,2013b Cross-sectional hospital-based Convenience sampling Coronary angiography patients 287 n.s. n.s. 63 63 Regularly 100 109 n.s. - - n.s.
Shafique et al.,2012 Cross-sectional population-based cohort Voluntary response sampling Healthy subjects 2032 1039 (30-75) 325 325 1 WP/week - 1707 n.s. - - n.s.
Sibai et al.,2014 Cross-sectional hospital-based Convenience sampling Coronary angiography patients 1754 n.s. ( 40) 235 n.s. Ever 1 WP-year 544 975 n.s. - - n.s.
Ward et al.,2015 Cross-sectional population-based Stratified cluster random sampling - 2536 1220 25-65 286 n.s. Regularly - 2134 n.s. - - n.s.
Wu et al.,2013 Cross-sectional prospective population-based cohort Convenience sampling n.s. 20033 1971 (18-75) n.s. n.s. Ever regularly n.s. n.s. n.s. - - n.s.
WP: Waterpipe, WPS: Waterpipe smoking, CS: Cigarette smoking, ACS: Acute coronary syndrome. CHD: Coronary heart disease. n.s.: Not specified.
Fig. 3.  Forest plots demonstrating individual (squares) and pooled (rhombus) mean differences in heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP), with corresponding 95% confidence intervals (horizontal lines), obtained in waterpipe smokers compared to non-smokers. WPS: Waterpipe smoking. NS: Non-smoking.

Fig. 4.  Forest plots demonstrating individual (squares) and pooled (rhombus) mean differences in blood levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL) and triglyceride (TG), with corresponding 95% confidence intervals (horizontal lines), obtained in waterpipe smokers compared to non-smokers. WPS: Waterpipe smoking. NS: Non-smoking.

Fig. 5.  Forest plots demonstrating individual (squares) and pooled (rhombus) mean differences in heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP), with corresponding 95% confidence intervals (horizontal lines), obtained in waterpipe smokers compared to cigarette smokers. WPS: Waterpipe smoking. CS: Cigarette smoking.

Fig. 6.  Forest plots demonstrating individual (squares) and pooled (rhombus) mean differences in blood levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL) and triglyceride (TG), with corresponding 95% confidence intervals (horizontal lines), obtained in waterpipe smokers compared to cigarette smokers. WPS: Waterpipe smoking. CS: Cigarette smoking.

[1] Al-Amri, A., Ghalilah, K., Al-Harbi, A., Al-Dubai, S. A. R., Al-Ghamdi, S. and Al-Zalabani, A. (2019) Waterpipe smoking and the risk of myocardial infarction: a hospital-based case-control study. Tobacco Induced Diseases 17, 87-87.
[2] Al-Kubati, M., Al-Kubati, A. S., al’Absi, M. and Fišer, B. (2006) The short-term effect of water-pipe smoking on the baroreflex control of heart rate in normotensives. Autonomic Neuroscience 126-127, 146-149.
[3] Al-Numair, K., Barber-Heidal, K., Al-Assaf, A. and El-Desoky, G. (2007) Water-pipe (shisha) smoking influences total antioxidant capacity and oxidative stress of healthy saudi males. Journal of Food Agriculture and Environment 5, 17-22.
[4] Al-Safi, S. A., Ayoub, N. M., Albalas, M. A., Al-Doghim, I. and Aboul-Enein, F. H. (2009) Does shisha smoking affect blood pressure and heart rate? Journal of Public Health 17, 121-126.
[5] Al Suwaidi, J., Al Habib, K., Singh, R., Hersi, A., Al Nemer, K., Asaad, N., Al Saif, S., Al-Motarreb, A., Almahmeed, W., Sulaiman, K., Amin, H., Al-Lawati, J., Al Bustani, N., Al-Sagheer, N. Q. and Ali, W. M. (2012) Tobacco modalities used and outcome in patients with acute coronary syndrome: an observational report. Postgraduate Medical Journal 88, 566-574.
[6] Alomari, M. A., Khabour, O. F., Alzoubi, K. H., Shqair, D. M. and Eissenberg, T. (2014) Central and peripheral cardiovascular changes immediately after waterpipe smoking. Inhalation Toxicology 26, 579-587.
[7] Ambrose, J. A. and Barua, R. S. (2004) The pathophysiology of cigarette smoking and cardiovascular disease. Journal of the American College of Cardiology 43, 1731-1737.
[8] Azar, R. R., Frangieh, A. H., Mroué, J., Bassila, L., Kasty, M., Hage, G. and Kadri, Z. (2016) Acute effects of waterpipe smoking on blood pressure and heart rate: a real-life trial. Inhalation Toxicology 28, 339-342.
[9] Benowitz, N. L. (2003) Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Progress in Cardiovascular Diseases 46, 91-111.
[10] Bentur, L., Hellou, E., Goldbart, A., Pillar, G., Monovich, E., Salameh, M., Scherb, I. and Bentur, Y. (2014) Laboratory and clinical acute effects of active and passive indoor group water-pipe (narghile) smoking. Chest 145, 803-809.
[11] Blank, M. D., Cobb, C. O., Kilgalen, B., Austin, J., Weaver, M. F., Shihadeh, A. and Eissenberg, T. (2011) Acute effects of waterpipe tobacco smoking: a double-blind, placebo-control study. Drug and Alcohol Dependence 116, 102-109.
[12] Chami, H. A., Isma’eel, H., Tamim, H., Adawi, M., Al Kuwari, M. and Al Mullah, A. (2019) The association of water-pipe smoking and coronary artery calcium in a community-based sample. Chest 155, 1217-1225.
[13] Chwyeed, S. (2018) A Comparison between the Effect of Shisha and Cigarette Smoking on Serum Lipid Profile of Males in Nasiriyah City. Medical Journal of Babylon 15, 39-42.
[14] Cobb, C. O., Sahmarani, K., Eissenberg, T. and Shihadeh, A. (2012) Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a “healthy” tobacco-free alternative. Toxicology Letters 215, 70-75.
[15] Cobb, C. O., Shihadeh, A., Weaver, M. F. and Eissenberg, T. (2011) Waterpipe tobacco smoking and cigarette smoking: a direct comparison of toxicant exposure and subjective effects. Nicotine & Tobacco Research 13, 78-87.
[16] Diab, O. A., Abdelrahim, E. M. and Esmail, M. (2015) Effect of water pipe tobacco smoking on plasma high sensitivity C reactive protein level and endothelial function compared to cigarette smoking. The Egyptian Heart Journal 67, 233-241.
[17] Eissenberg, T. and Shihadeh, A. (2009) Waterpipe tobacco and cigarette smoking. American Journal of Preventive Medicine 37, 518-523.
[18] Elias, W., Assy, N., Elias, I., Toledo, T., Yassin, M. and Bowirrat, A. (2012) The detrimental danger of water-pipe (Hookah) transcends the hazardous consequences of general health to the driving behavior. Journal of Translational Medicine 10, 126.
[19] Eliasson, M. (1995) Relationship of cigarette smoking and snuff dipping to plasma fibrinogen, fibrinolytic variables and serum insulin. The Northern Sweden MONICA study. Atherosclerosis 113, 41-53.
[20] El-Zaatari, Z. M., Chami, H. A. and Zaatari, G. S. (2015) Health effects associated with waterpipe smoking. Tobacco Control 24, i31-i43.
[21] Ettehad, D., Emdin, C. A., Kiran, A., Anderson, S. G., Callender, T., Emberson, J., Chalmers, J., Rodgers, A. and Rahimi, K. (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. the Lancet 387, 957-967.
[22] Ghasemi, A., Syedmoradi, L., Momenan, A. A., Zahediasl, S. and Azizi, F. (2010) The influence of cigarette and qalyan (hookah) smoking on serum nitric oxide metabolite concentration. Scandinavian Journal of Clinical and Laboratory Investigation 70, 116-121.
[23] Hakim, F., Hellou, E., Goldbart, A., Katz, R., Bentur, Y. and Bentur, L. (2011) The acute effects of water-pipe smoking on the cardiorespiratory system. Chest 139, 775-781.
[24] Hammal, F., Chappell, A., Wild, T. C., Kindzierski, W., Shihadeh, A., Vanderhoek, A., Huynh, C. K., Plateel, G. and Finegan, B. A. (2015) ’Herbal’ but potentially hazardous: an analysis of the constituents and smoke emissions of tobacco-free waterpipe products and the air quality in the cafes where they are served. Tobacco Control 24, 290-297.
[25] Hashem Sezavar, S., Abedi, A. and Sadeghi Bazargani, H. (2004) A comparative study of plasma fibrinogen among hookah smokers, cigarette smokers and non-smokers. Iranian Heart Journal 5, 48-54.
[26] Hawari, F. I., Obeidat, N. A., Ayub, H., Ghonimat, I., Eissenberg, T., Dawahrah, S. and Beano, H. (2013) The acute effects of waterpipe smoking on lung function and exercise capacity in a pilot study of healthy participants. Inhalation Toxicology 25, 492-497.
[27] Islami, F., Pourshams, A., Vedanthan, R., Poustchi, H., Kamangar, F., Golozar, A., Etemadi, A., Khademi, H., Freedman, N. D., Merat, S., Garg, V., Fuster, V., Wakefield, J., Dawsey, S. M., Pharoah, P., Brennan, P., Abnet, C. C., Malekzadeh, R. and Boffetta, P. (2013) Smoking water-pipe, chewing nass and prevalence of heart disease: a cross-sectional analysis of baseline data from the Golestan Cohort Study, Iran. Heart 99, 272-278.
[28] Jabbour, S., El-Roueiheb, Z. and Sibai, A. M. (2003) Nargileh (Water-Pipe) smoking and incident coronary heart disease: a case-control study. Annals of Epidemiology 13, 570.
[29] Kadhum, M., Jaffery, A., Haq, A., Bacon, J. and Madden, B. (2014) Measuring the acute cardiovascular effects of shisha smoking: a cross-sectional study. JRSM Open 5, 205427041453112.
[30] Khan, N. A., Lawyer, G., McDonough, S., Wang, Q., Kassem, N. O., Kas-Petrus, F., Ye, D., Singh, K. P., Kassem, N. O. and Rahman, I. (2020) Systemic biomarkers of inflammation, oxidative stress and tissue injury and repair among waterpipe, cigarette and dual tobacco smokers. Tobacco Control 29, s102-s109.
[31] Koubaa, A., Triki, M., Trabelsi, H., Masmoudi, L., Sahnoun, Z. and Hakim, A. (2015a) Changes in antioxidant defense capability and lipid profile after 12-week low- intensity continuous training in both cigarette and hookah smokers: a follow-up study. PLoS One 10, e0130563.
[32] Koubaa, A., Triki, M., Trabelsi, H., Masmoudi, L., Zeghal, K. N., Sahnoun, Z. and Hakim, A. (2015b) Effect of low-intensity continuous training on lung function and cardiorespiratory fitness in both cigarette and hookah smokers. African Health Sciences 15, 1170-1181.
[33] Layoun, N., Saleh, N., Barbour, B., Awada, S., Rachidi, S., Al-Hajje, A., Bawab, W., Waked, M. and Salameh, P. (2014) Waterpipe effects on pulmonary function and cardiovascular indices: a comparison to cigarette smoking in real life situation. Inhalation Toxicology 26, 620-627.
[34] Leone, A. (2003) Relationship between cigarette smoking and other coronary risk factors in atherosclerosis: risk of cardiovascular disease and preventive measures. Current Pharmaceutical Design 9, 2417-2423.
[35] Marshall, M., Ghazipura, M., Hossain, T., Gordon, T. and Chen, L. (2018) Cardiopulmonary risk of waterpipe smoke: a meta-analysis. Journal of Lung Health and Diseases 2, 31-40.
[36] Maziak, W., Taleb, Z. B., Bahelah, R., Islam, F., Jaber, R., Auf, R. and Salloum, R. G. (2015) The global epidemiology of waterpipe smoking. Tobacco Control 24, i3-i12.
[37] Mons, U., Muezzinler, A., Gellert, C., Schottker, B., Abnet, C. C., Bobak, M., de Groot, L., Freedman, N. D., Jansen, E., Kee, F., Kromhout, D., Kuulasmaa, K., Laatikainen, T., O’Doherty, M. G., Bueno-de-Mesquita, B., Orfanos, P., Peters, A., van der Schouw, Y. T., Wilsgaard, T., Wolk, A., Trichopoulou, A., Boffetta, P., Brenner, H. and on behalf of the CHANCES consortium (2015) Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ 350, h1551-h1551.
[38] Muddathir, A., Abd Alla, M. and Khabour, O. (2018) Waterpipe Smoking is associated with changes in fibrinogen, FVII, and FVIII levels. Acta Haematologica 140, 159-165.
[39] Nelson, M. D., Rezk-Hanna, M., Rader, F., Mason, O. R., Tang, X., Shidban, S., Rosenberry, R., Benowitz, N. L., Tashkin, D. P., Elashoff, R. M., Lindner, J. R. and Victor, R. G. (2016) Acute effect of hookah smoking on the human coronary microcirculation. The American Journal of Cardiology 117, 1747-1754.
[40] Nikolovska Vukadinović, A., Vukadinović, D., Borer, J., Cowie, M., Komajda, M., Lainscak, M., Swedberg, K. and Böhm, M. (2017) Heart rate and its reduction in chronic heart failure and beyond. European Journal of Heart Failure 19, 1230-1241.
[41] Patsopoulos, N. A., Evangelou, E. and Ioannidis, J. P. (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. International Journal of Epidemiology 37, 1148-1157.
[42] Pedro-Botet, J., Ascaso, J. F., Blasco, M., Brea, Á., Díaz, Á., Hernández-Mijares, A, Pintó, X., Millán, J., Grupo de trabajo sobre Dislipidemia Aterogénica and Sociedad Española de Arteriosclerosis. (2020) Triglycerides, HDL cholesterol and atherogenic dyslipidaemia in the 2019 European guidelines for the management of dyslipidaemias. Clínica e Investigación en Arteriosclerosis (in press).
[43] Platt, D. E., Hariri, E., Salameh, P., Helou, M., Sabbah, N., Merhi, M., Chammas, E., Ammar, W., Abchee, A. B. and Zalloua, P. A. (2017) Association of waterpipe smoking with myocardial infarction and determinants of metabolic syndrome among catheterized patients. Inhalation Toxicology 29, 429-434.
[44] Rezk-Hanna, M. and Benowitz, N. L. (2019a) Cardiovascular effects of hookah smoking: potential implications for cardiovascular risk. Nicotine and Tobacco Research 21, 1151-1161.
[45] Rezk-Hanna, M., Mosenifar, Z., Benowitz, N. L., Rader, F., Rashid, M., Davoren, K., Moy, N. B., Doering, L., Robbins, W., Sarna, L., Li, N., Chang, L. C., Elashoff, R. M. and Victor, R. G. (2019b) High carbon monoxide levels from charcoal combustion mask acute endothelial dysfunction induced by hookah (waterpipe) smoking in young adults. Circulation 139, 2215-2224.
[46] Saffar Soflaei, S., Darroudi, S., Tayefi, M., Nosrati Tirkani, A., Moohebati, M., Ebrahimi, M., Esmaily, H., Parizadeh, S. M. R., Heidari-Bakavoli, A. R., Ferns, G. A. and Ghayour-Mobarhan, M. (2018) Hookah smoking is strongly associated with diabetes mellitus, metabolic syndrome and obesity: a population-based study. Diabetology and Metabolic Syndrome 10, 33.
[47] Salahuddin, S., Prabhakaran, D. and Roy, A. (2012) Pathophysiological mechanisms of tobacco-related CVD. Global Heart 7, 113.
[48] Selim, G. M., Elia, R. Z., El Bohey, A. S. and El Meniawy, K. A. (2013a) Effect of shisha vs. cigarette smoking on endothelial function by brachial artery duplex ultrasonography: an observational study. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology 13, 759-765.
[49] Selim, G. M., Fouad, H. and Ezzat, S. (2013b) Impact of shisha smoking on the extent of coronary artery disease in patients referred for coronary angiography. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology 13, 647-654.
[50] Shafagoj, Y. A. and Mohammed, F. I. (2002) Levels of maximum end-expiratory carbon monoxide and certain cardiovascular parameters following hubble-bubble smoking. Saudi Medical Journal 23, 953-958.
[51] Shafique, K., Mirza, S. S., Mughal, M. K., Arain, Z. I., Khan, N. A., Tareen, M. F. and Ahmad, I. (2012) Water-Pipe smoking and metabolic syndrome: a population-based study. PLoS One 7, e39734.
[52] Shaikh, R. B., Vijayaraghavan, N., Sulaiman, A. S., Kazi, S. and Shafi, M. S. (2008) The acute effects of waterpipe smoking on the cardiovascular and respiratory systems. Journal of Preventive Medicine and Hygiene 49, 101-107.
[53] Shihadeh, A. (2003) Investigation of mainstream smoke aerosol of the argileh water pipe. Food and Chemical Toxicology 41, 143-152.
[54] Shishani, K., Howell, D., McPherson, S. and Roll, J. (2014) Young adult waterpipe smokers: Smoking behaviors and associated subjective and physiological effects. Addictive Behaviors 39, 1113-1119.
[55] Sibai, A. M., Tohme, R. A., Almedawar, M. M., Itani, T., Yassine, S. I., Nohra, E. A. and Isma’eel, H. A. (2014) Lifetime cumulative exposure to waterpipe smoking is associated with coronary artery disease. Atherosclerosis 234, 454-460.
[56] Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., et al. (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355, i4919.
[57] Vigo, D. E., Pérez Lloret, S., Videla, A. J., Pérez Chada, D., Hünicken, H. M., Mercuri, J., Romero, R., Nicola Siri, L. C. and Cardinali, D. P. (2010) Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude. Wilderness and Environmental Medicine 21, 4-10.
[58] Ward, K. D., Ahn, S., Mzayek, F., Al Ali, R., Rastam, S., Asfar, T., Fouad, F. and Maziak, W. (2015) The relationship between waterpipe smoking and body weight: population-based findings from Syria. Nicotine and Tobacco Research 17, 34-40.
[59] Waziry, R., Jawad, M., Ballout, R. A., Al Akel, M. and Akl, E. A. (2018) The effects of waterpipe tobacco smoking on health outcomes: an updated systematic review and meta-analysis. International Journal of Epidemiology 46, 32-43.
[60] Wolfram, R. M., Chehne, F., Oguogho, A. and Sinzinger, H. (2003) Narghile (water pipe) smoking influences platelet function and (iso-)eicosanoids. Life Sciences 74, 47-53.
[61] Wu, F., Chen, Y., Parvez, F., Segers, S., Argos, M., Islam, T., Ahmed, A., Rakibuz-Zaman, M., Hasan, R., Sarwar, G. and Ahsan, H. (2013) A prospective study of tobacco smoking and mortality in bangladesh. PLoS One 8, e58516.
[1] Shanna J. Hardin, Mahavir Singh, Wintana Eyob, Jack C. Molnar, Rubens P. Homme, Akash K. George, Suresh C. Tyagi. Diet-induced chronic syndrome, metabolically transformed trimethylamine-N-oxide, and the cardiovascular functions[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 121-128.
[2] Wenyan Jiang, Mei Wang. New insights into the immunomodulatory role of exosomes in cardiovascular disease[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 153-160.
[3] Rudaynah A. Alali. A short review of proprotein convertase subtilisin/kexin type 9 inhibitors[J]. Reviews in Cardiovascular Medicine, 2019, 20(1): 1-8.
[4] Jennifer G. Robinson, Karol E. Watson. Identifying Patients for Nonstatin Therapy[J]. Reviews in Cardiovascular Medicine, 2018, 19(S1): 1-8.
[5] Davide Bolignano, Anna Pisano, Graziella D’Arrigo. Pulmonary hypertension: a neglected risk condition in renal patients?[J]. Reviews in Cardiovascular Medicine, 2018, 19(4): 117-121.
[6] Peter A. McCullough, Aaron Y. Kluger, Kristen M. Tecson, Clay M. Barbin, Andy Y. Lee, Edgar V. Lerma, Zachary P. Rosol, Sivan L. Kluger, Janani Rangaswami. Inhibition of the Sodium–Proton Antiporter (Exchanger) is a Plausible Mechanism of Potential Benefit and Harm for Drugs Designed to Block Sodium Glucose Co-transporter 2[J]. Reviews in Cardiovascular Medicine, 2018, 19(2): 51-63.
[7] Alberto Palazzuoli, Helen Hashemi, Lauren C. Jameson, Peter A. McCullough. Hyperuricemia and Cardiovascular Disease[J]. Reviews in Cardiovascular Medicine, 2017, 18(4): 134-145.
[8] Claudio Ronco, Federico Ronco, Peter A. McCullough. A Call to Action to Develop Integrated Curricula in Cardiorenal Medicine[J]. Reviews in Cardiovascular Medicine, 2017, 18(3): 93-99.
[9] Boback Ziaeian, John Dinkler, Karol Watson. Implementation of the 2013 American College of Cardiology/American Heart Association Blood Cholesterol Guideline Including Data From the Improved Reduction of Outcomes: Vytorin Efficacy International Trial[J]. Reviews in Cardiovascular Medicine, 2015, 16(2): 125-130.
[10] Norman E. Lepor, Dean D. Fouchia, Peter A. McCulloughsup. New Vistas for the Treatment of Obesity: Turning the Tide Against the Leading Cause of Morbidity and Cardiovascular Mortality in the Developed World[J]. Reviews in Cardiovascular Medicine, 2014, 15(S2): 1-21.
[11] Virginia A. Triant. Epidemiology of Coronary Heart Disease in Patients With Human Immunodeficiency Virus[J]. Reviews in Cardiovascular Medicine, 2014, 15(S1): 1-8.
[12] Patrick W.G. Mallon. Impact of Nucleoside Reverse Transcriptase Inhibitors on Coronary Heart Disease[J]. Reviews in Cardiovascular Medicine, 2014, 15(S1): 21-29.
[13] Norman E. Lepor, Laurn Contreras, Chirag Desai, Dean J. Kereiakes. The Potential Role of Anti-PCSK9 Monoclonal Antibodies in the Management of Hypercholesterolemia[J]. Reviews in Cardiovascular Medicine, 2014, 15(4): 290-309.
[14] Karol E. Watson, Eric H. Stocker, Douglas S. Jacoby, Peter A. McCullough. Advanced Lipid Testing: When, Why, and In Whom?[J]. Reviews in Cardiovascular Medicine, 2014, 15(4): 310-319.
[15] Sabas I. Gomez, Pablo Urbandt, Nirat Beohar, Orlando Santana. Renal Denervation: Current Status and Future Applications[J]. Reviews in Cardiovascular Medicine, 2014, 15(4): 351-357.
No Suggested Reading articles found!