Please wait a minute...
Reviews in Cardiovascular Medicine  2020, Vol. 21 Issue (3): 385-397     DOI: 10.31083/j.rcm.2020.03.78
Systematic Review Previous articles | Next articles
SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: a systematic review
Niloofar Deravi1, *(), Mobina Fathi1, Kimia Vakili1, Shirin Yaghoobpoor1, Marzieh Pirzadeh2, Melika Mokhtari3, Tara Fazel4, Elahe Ahsan1, Samad Ghaffari5, *()
1Student Research committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
2Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
3Student Research Committee, Dental Faculty, Tehran Medical sciences, Islamic Azad University, Tehran 1946853314, Iran
4Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Rasht 4199613776, Iran
5Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
Download:  PDF(418KB)  ( 1017 ) Full text   ( 118 )
Export:  BibTeX | EndNote (RIS)      
Abstract:

After the emergence of the novel 2019 coronavirus disease in P. R. China, this highly contagious disease has been currently spread out to almost all countries, worldwide. Novel 2019 coronavirus disease, Middle East respiratory syndrome, and severe acute respiratory syndrome are reported to cause a higher risk for severe infections in patients with chronic comorbidities, such as hypertension and diabetes. These severe infections can contribute to higher rates of morbidity and mortality in these patients. In the present review, we discussed the role and underlying mechanisms of the two most common chronic diseases, type-2 diabetes mellitus and hypertension, in clinical manifestations and disease severity of novel 2019 coronavirus disease, Middle East respiratory syndrome and severe acute respiratory syndrome, with the hope to provide evidence for better decision-making in the treatment of this vulnerable population.

Key words:  Diabetes mellitus      hypertension      SARS-CoV-2      COVID-19      MERS      SARS     
Submitted:  30 April 2020      Revised:  02 September 2020      Accepted:  07 September 2020      Published:  30 September 2020     
*Corresponding Author(s):  Niloofar Deravi Email: niloofarderavi@sbmu.ac.ir; Samad Ghaffari Email: ghafaris@gmail.com   

Cite this article: 

Niloofar Deravi, Mobina Fathi, Kimia Vakili, Shirin Yaghoobpoor, Marzieh Pirzadeh, Melika Mokhtari, Tara Fazel, Elahe Ahsan, Samad Ghaffari. SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: a systematic review. Reviews in Cardiovascular Medicine, 2020, 21(3): 385-397.

URL: 

https://rcm.imrpress.com/EN/10.31083/j.rcm.2020.03.78     OR     https://rcm.imrpress.com/EN/Y2020/V21/I3/385

Fig. 1.  The role of diabetes mellitus in vulnerability to acute viral infections. Both types of diabetes mellitus (T2D and T1D) are accompanied by hyperglycemia and obesity. Obesity, is defined by hypertrophy of adipose tissue that can lead to production of some pro-inflammatory mediators. This adipose tissue induced mediators, alongside with inflammation caused by hyperglycemia, can lead to altered immune profile that can put patients at higher risk of acute viral infections.

Fig. 2.  Angiotensin I is converted to angiotensin II by ACE enzyme. Angiotensin II a vasoconstrictor agent causing hypertension, inflammation and acute lung injury. Moreover, angiotensin II induces the inflammatory pathway through activating NFκβ. It also stimulates monocytes to secrete IL-1β. ACE2, the receptor of SARS-COV2 converts angiotensin I and angiotensin II to angiotensin 1-9 and angiotensin 1-7, respectively. ACE2 also counter regulates ACE enzyme activation. Hypertension and diabetes induce an inflammatory state in the body. Furthermore, diabetes mellitus (DM) results in more ACE2 and spike protein glycosylation which helps viral entry. DM patients also have elevated levels of furin protease which cleavage spike protein and helps viral entry. Anti-hypertensive and hypoglycemic drugs that block the ACE enzyme pathway upregulate the expression of ACE2 and could facilitate virus entry.

[1] Alraddadi, B. M., Watson, J. T., Almarashi, A., Abedi, G. R., Turkistani, A., Sadran, M., Housa, A., Almazroa, M. A., Alraihan, N. and Banjar, A. (2016) Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014. Emerging Infectious Diseases 22, 49.
[2] Arora, P., Garcia-Bailo, B., Dastani, Z., Brenner, D., Villegas, A., Malik, S., Spector, T. D., Richards, B., El-Sohemy, A. and Karmali, M. (2011) Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes. BMC Medical Genetics 12, 95.
[3] Arwady, M. A., Alraddadi, B., Basler, C., Azhar, E. I., Abuelzein, E., Sindy, A. I., Sadiq, B. M. B., Althaqafi, A. O., Shabouni, O. and Banjar, A. (2016) Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014. Emerging Infectious Diseases 22, 1395.
[4] Badawi, A., Klip, A., Haddad, P., Cole, D. E., Bailo, B. G., El-Sohemy, A. and Karmali, M. (2010) Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes, Metabolic Syndrome and Obesity 3, 173.
[5] Badawi, A. and Ryoo, S. G. (2016) Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. International Journal of Infectious Diseases 49, 129-133.
[6] Badawi, A., Sayegh, S., Sallam, M., Sadoun, E., Al-Thani, M., Alam, M. W. and Arora, P. (2015) The global relationship between the prevalence of diabetes mellitus and incidence of tuberculosis: 2000-2012. Global Journal of Health Science 7, 183.
[7] Banik, G. R., Alqahtani, A. S., Booy, R. and Rashid, H. (2016) Risk factors for severity and mortality in patients with MERS-CoV: analysis of publicly available data from Saudi Arabia. Virologica Sinica 31, 81-84.
[8] Bass, J. J., Wilkinson, D. J., Rankin, D., Phillips, B. E., Szewczyk, N. J., Smith, K. and Atherton, P. J. (2017) An overview of technical considerations for Western blotting applications to physiological research. Scandinavian Journal of Medicine and Science in Sports 27, 4-25.
[9] Bataillard, A., Renaudin, C. and Sassard, J. (1995) Silica attenuates hypertension in Lyon hypertensive rats. Journal of Hypertension 13, 1581-1584.
[10] Benfield, T., Jensen, J. and Nordestgaard, B. (2007) Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 50, 549-554.
[11] Bloomgarden, Z. T. (2020) Diabetes and COVID-19. Journal of Diabetes 12, 347-348.
[12] Bornstein, S. R., Dalan, R., Hopkins, D., Mingrone, G. and Boehm, B. O. (2020) Endocrine and metabolic link to coronavirus infection. Nature Reviews Endocrinology 16, 1-2.
[13] Brufsky, A. (2020) Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. Journal of Medical Virology 92, 770-775.
[14] Brufsky, A. and Lotze, M. T. (2020) DC/L-SIGNs of hope in the COVID-19 pandemic. Journal of Medical Virology 92, 1396-1398.
[15] Bush, E., Maeda, N., Kuziel, W. A., Dawson, T. C., Wilcox, J. N., DeLeon, H. and Taylor, W. R. (2000) CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 36, 360-363.
[16] Casqueiro, J., Casqueiro, J. and Alves, C. (2012) Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism 16, S27.
[17] Chan-Yeung, M. and Xu, R. H. (2003) SARS: epidemiology. Respirology 8, S9-S14.
[18] Chen, J., Jiang, Q., Xia, X., Liu, K., Yu, Z., Tao, W., Gong, W. and Han, J.-D. J. (2020a) Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. Aging Cell 19, e13168.
[19] Chen, L., Liu, W., Zhang, Q., Xu, K., Ye, G., Wu, W., Sun, Z., Liu, F., Wu, K. and Zhong, B. (2020b) RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerging Microbes and Infections 9, 313-319.
[20] Chen, X., Hu, W., Ling, J., Mo, P., Zhang, Y., Jiang, Q., Ma, Z., Cao, Q., Deng, L. and Song, S. (2020c) Hypertension and Diabetes Delay the Viral Clearance in COVID-19 Patients. medRxiv (in press).
[21] Chen, Y., Gong, X., Wang, L. and Guo, J. (2020d) Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis. medRxiv (in press).
[22] Cheng, V. C., Lau, S. K., Woo, P. C. and Yuen, K. Y. (2007) Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews 20, 660-694.
[23] Choi, W. S., Kang, C.-I., Kim, Y., Choi, J.-P., Joh, J. S., Shin, H.-S., Kim, G., Peck, K. R., Chung, D. R. and Kim, H. O. (2016) Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infection and Chemotherapy 48, 118-126.
[24] Chong, P. Y., Chui, P., Ling, A. E., Franks, T. J., Tai, D. Y., Leo, Y. S., Kaw, G. J., Wansaicheong, G., Chan, K. P. and Ean Oon, L. L. (2004) Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Archives of Pathology and Laboratory Medicine 128, 195-204.
[25] Ciceri, F., Beretta, L., Scandroglio, A. M., Colombo, S., Landoni, G., Ruggeri, A., Peccatori, J., D’Angelo, A., De Cobelli, F. and Rovere-Querini, P. (2020) Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Critical Care and Resuscitation 15, 95-97.
[26] Clozel, M., Kuhn, H., Hefti, F. and Baumgartner, H. R. (1991) Endothelial dysfunction and subendothelial monocyte macrophages in hypertension. Effect of angiotensin converting enzyme inhibition. Hypertension 18, 132-141.
[27] Connors, J. M. and Levy, J. H. (2020) COVID-19 and its implications for thrombosis and anticoagulation. Blood, The Journal of the American Society of Hematology 135, 2033-2040.
[28] Cowan, L. T., Lutsey, P. L., Pankow, J. S., Matsushita, K., Ishigami, J. and Lakshminarayan, K. (2018) Inpatient and outpatient infection as a trigger of cardiovascular disease: the ARIC Study. Journal of the American Heart Association 7, e009683.
[29] Crackower, M. A., Sarao, R., Oudit, G. Y., Yagil, C., Kozieradzki, I., Scanga, S. E., Oliveira-dos-Santos, A. J., da Costa, J., Zhang, L. and Pei, Y. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822-828.
[30] Cui, J., Li, F. and Shi, Z.-L. (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology 17, 181-192.
[31] Danser, A. H. J., Epstein, M. and Batlle, D. (2020) Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 75, 1382-1385.
[32] Dean, R. G. and Burrell, L. M. (2007) ACE2 and diabetic complications. Current Pharmaceutical Design 13, 2730-2735.
[33] Dhainaut, J.-F., Claessens, Y.-E., Janes, J. and Nelson, D. R. (2005) Underlying disorders and their impact on the host response to infection. Clinical Infectious Diseases 41, S481-S489.
[34] Dharmashankar, K. and Widlansky, M. E. (2010) Vascular endothelial function and hypertension: insights and directions. Current Hypertension Reports 12, 448-455.
[35] Dodek, P. (2004) Diabetes and other comorbid conditions were associated with a poor outcome in SARS. ACP Journal Club 140, 19.
[36] Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K. and Jeyaseelan, R. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research 87, e1-e9.
[37] Dooley, K. E. and Chaisson, R. E. (2009) Tuberculosis and diabetes mellitus: convergence of two epidemics. The Lancet Infectious Diseases 9, 737-746.
[38] Dörffel, Y., Lätsch, C., Stuhlmüller, B., Schreiber, S., Scholze, S., Burmester, G. R. and Scholze, J.r. (1999) Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34, 113-117.
[39] Ebrahimpour-Malekshah, R., Amini, A., Zare, F., Mostafavinia, A., Davoody, S., Deravi, N., Rahmanian, M., Hashemi, S. M., Habibi, M., Ghoreishi, S. K., Chien, S., Shafikhani, S., Ahmadi, H., Bayat, S. and Bayat, M. (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open BMJ Open Diabetes Research and Care 8, e001033.
[40] Engin, A. (2017) Endothelial dysfunction in obesity. In, Engin, A. (eds.) Obesity and Lipotoxicity (pp. 345-379 ). Springer.
[41] Fang, L., Karakiulakis, G. and Roth, M. (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet. Respiratory Medicine 8, e21.
[42] Fernandez, C., Rysä, J., Almgren, P., Nilsson, J., Engström, G., Orho-Melander, M., Ruskoaho, H. and Melander, O. (2018) Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. Journal of Internal Medicine 284, 377-387.
[43] Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I. and Gallagher, P. E. (2005) Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605-2610.
[44] Garbati, M. A., Fagbo, S. F., Fang, V. J., Skakni, L., Joseph, M., Wani, T. A., Cowling, B. J., Peiris, M. and Hakawi, A. (2016) A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes. PLoS One 11, e0165978.
[45] Garcia-Vallejo, J. J. and van Kooyk, Y. (2013) The physiological role of DC-SIGN: A tale of mice and men. Trends in Immunology 34, 482-486.
[46] Garcia, M. C., Moros, M. J. S., Peralta, P. S.-O., Hernandez-Barrera, V., Jimenez-Garcia, R. and Pachon, I. (2012) Clinical characteristics and outcomes of diabetic patients who were hospitalised with 2009 pandemic influenza A H1N1 infection. Journal of Infection 64, 218-224.
[47] Gardner, J. P., Durso, R. J., Arrigale, R. R., Donovan, G. P., Maddon, P. J., Dragic, T. and Olson, W. C. (2003) L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proceedings of the National Academy of Sciences 100, 4498-4503.
[48] Giagulli, V. A., Guastamacchia, E., Magrone, T., Jirillo, E., Lisco, G., De Pergola, G. and Triggiani, V. (2020) Worse progression of COVID-19 in men: Is Testosterone a key factor? Andrology (in press).
[49] Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., Liu, L., Shan, H., Lei, C.-l. and Hui, D. S. (2020) Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 382, 1708-1720.
[50] Guo, J., Huang, Z., Lin, L. and Lv, J. (2020a) Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of Severe Acute Respiratory Syndrome Coronavirus 2 infection. Journal of the American Heart Association 9, e016219.
[51] Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X. and Lu, Z. (2020b) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiology 5, 811-818.
[52] Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S. and Hu, D. (2020c) Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/metabolism Research and Reviews 31, e3319.
[53] Gupta, R., Ghosh, A., Singh, A. K. and Misra, A. (2020a) Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes and Metabolic Syndrome 14, 211.
[54] Gupta, S., Hayek, S. S., Wang, W., Chan, L., Mathews, K. S., Melamed, M. L., Brenner, S. K., Leonberg-Yoo, A., Schenck, E. J. and Radbel, J. (2020b) Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Internal Medicine 15, e203596.
[55] Haller, H., Behrend, M., Park, J. K., Schaberg, T., Luft, F. C. and Distler, A. (1995) Monocyte infiltration and c-fms expression in hearts of spontaneously hypertensive rats. Hypertension 25, 132-138.
[56] Hamming, I., Timens, W., Bulthuis, M., Lely, A., Navis, G. and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 203, 631-637.
[57] Han, D. P., Lohani, M. and Cho, M. W. (2007) Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. Journal of Virology 81, 12029-12039.
[58] Han, Y., Runge, M. S. and Brasier, A. R. (1999) Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-κB transcription factors. Circulation Research 84, 695-703.
[59] Harmer, D., Gilbert, M., Borman, R. and Clark, K. L. (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Letters 532, 107-110.
[60] Hilgers, K. F., Hartner, A., Porst, M., Mai, M., Wittmann, M., Hugo, C., Ganten, D., Geiger, H., Veelken, R. and Mann, J. F. (2000) Monocyte chemoattractant protein-1 and macrophage infiltration in hypertensive kidney injury. Kidney International 58, 2408-2419.
[61] Hill, M. A., Mantzoros, C. and Sowers, J. R. (2020) Commentary: COVID-19 in patients with diabetes. Metabolism.
[62] Ho, W. (2003) Guideline on management of severe acute respiratory syndrome (SARS). The Lancet 361, 1313-1315.
[63] Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C. and Ketheesan, N. (2015) Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 144, 171-185.
[64] Huang, Y.-T., Lee, Y.-C. and Hsiao, C.-J. (2009) Hospitalization for ambulatory-care-sensitive conditions in Taiwan following the SARS outbreak: a population-based interrupted time series study. Journal of the Formosan Medical Association 108, 386-394.
[65] Iacobellis, G. (2015) Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature Reviews Endocrinology 11, 363.
[66] Iacobellis, G. (2020) COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Research and Clinical Practice 162, 108125.
[67] Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T. and Leong-Poi, H. (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112-116.
[68] Jeffers, S. A., Tusell, S. M., Gillim-Ross, L., Hemmila, E. M., Achenbach, J. E., Babcock, G. J., Thomas, W. D., Thackray, L. B., Young, M. D. and Mason, R. J. (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences 101, 15748-15753.
[69] Johnson, R. J., Alpers, C. E., Yoshimura, A., Lombardi, D., Pritzl, P., Floege, J. and Schwartz, S. M. (1992) Renal injury from angiotensin II-mediated hypertension. Hypertension 19, 464-474.
[70] Kesavadev, J., Misra, A., Das, A. K., Saboo, B., Basu, D., Thomas, N., Joshi, S. R., Unnikrishnan, A., Shankar, A. and Krishnan, G. (2012) Suggested use of vaccines in diabetes. Indian Jurnal of Edocrinology and Mtabolism 16, 886.
[71] Kiely, D. G., Cargill, R. I., Wheeldon, N. M., Coutie, W. J. and Lipworth, B. J. (1997) Haemodynamic and endocrine effects of type 1 angiotensin II receptor blockade in patients with hypoxaemic cor pulmonale. Cardiovascular Rsearch 33, 201-208.
[72] Kjeldsen, S. E. (2018) Hypertension and cardiovascular risk: general aspects. Pharmacological search 129, 95-99.
[73] Korakas, E., Ikonomidis, I., Kousathana, F., Balampanis, K., Kountouri, A., Raptis, A., Palaiodimou, L., Kokkinos, A. and Lambadiari, V. (2020) Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. American Journal of Physiology-Endocrinology and Metabolism 319, E105-E109.
[74] Kulcsar, K. A., Coleman, C. M., Beck, S. E. and Frieman, M. B. (2019) Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI insight 4, e131774.
[75] Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z. and Zhao, Y. (2020a) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology 109, 1-538.
[76] Li, G., Hu, R. and Zhang, X. (2020b) Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension. Hypertension Research 43, 8-590.
[77] Li, J.-J. and Chen, J.-L. (2005) Inflammation may be a bridge connecting hypertension and atherosclerosis. Medical Hpotheses 64, 925-929.
[78] Li, J., Doerffel, Y., Hocher, B. and Unger, T. 2007.Inflammation in the genesis of hypertension and its complications-the role of angiotensin II. Oxford University Press.
[79] Li, K., Wohlford-Lenane, C. L., Channappanavar, R., Park, J.-E., Earnest, J. T., Bair, T. B., Bates, A. M., Brogden, K. A., Flaherty, H. A. and Gallagher, T. (2017a) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences 114, E3119-E3128.
[80] Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K. and Greenough, T. C. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454.
[81] Li, X. C., Zhang, J. and Zhuo, J. L. (2017b) The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacological Rearch 125, 21-38.
[82] Lighter, J., Phillips, M., Hochman, S., Sterling, S., Johnson, D., Francois, F. and Stachel, A. (2020) Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clinical Infectious Diseases 71, 6-897.
[83] Lin, L., Cheng, K., Tan, M. T., Zhao, L., Huang, Z., Yao, C., Wu, F., Zhang, H. and Shen, X. (2020) Comparison of the effects of 10.6-μm infrared laser and traditional moxibustion in the treatment of knee osteoarthritis. Lasers in Mdical Sience 35, 823-832.
[84] Madjid, M., Miller, C. C., Zarubaev, V. V., Marinich, I. G., Kiselev, O. I., Lobzin, Y. V., Filippov, A. E. and Casscells III, S. W. (2007) Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34 892 subjects. European Heart Journal 28, 1205-1210.
[85] Madjid, M., Safavi-Naeini, P., Solomon, S. D. and Vardeny, O. (2020) Potential Effects of Coronaviruses on the Cardiovascular System. JAMA Cardiology 5, 831.
[86] Marzi, A., Gramberg, T., Simmons, G., Möller, P., Rennekamp, A. J., Krumbiegel, M., Geier, M., Eisemann, J., Turza, N. and Saunier, B. (2004) DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. Journal of Virology 78, 12090-12095.
[87] Matsuyama, R., Nishiura, H., Kutsuna, S., Hayakawa, K. and Ohmagari, N. (2016) Clinical determinants of the severity of Middle East respiratory syndrome (MERS): a systematic review and meta-analysis. BMC Public Health 16, 1203.
[88] McCarron, R., Wang, L., Sirén, A.-L., Spatz, M. and Hallenbeck, J. (1994) Monocyte adhesion to cerebromicrovascular endothelial cells derived from hypertensive and normotensive rats. American Journal of Physiology-Heart and Circulatory Physiology 267, H2491-H2497.
[89] McCullough, P. A., Kelly, R. J., Ruocco, G., Lerma, E., Tumlin, J., Wheelan, K. R., Katz, N., Lepor, N. E., Vijay, K., Carter, H., Singh, B., McCullough, S. P., Bhambi, B. K., Palazzuoli, A., De Ferrari, G. M., Milligan, G. P., Safder, T., Tecson, K. M., Wang, D. D., McKinnon, J. E., O’Neill, W. W., Zervos, M. and Risch, H. A. (2020) Pathophysiological Basis and Rationale for Early Outpatient Treatment of SARS-CoV-2 (COVID-19) Infection. The American Journal of Medicine (in press).
[90] McLaughlin, T., Ackerman, S. E., Shen, L. and Engleman, E. (2017) Role of innate and adaptive immunity in obesity-associated metabolic disease. The Journal of Clinical Investigation 127, 5-13.
[91] Memish, Z. A., Perlman, S., Van Kerkhove, M. D. and Zumla, A. (2020) Middle East respiratory syndrome. The Lancet 395, 1063-1077.
[92] Meshkani, R. and Vakili, S. (2016) Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clinica Chimica Acta 462, 77-89.
[93] Mohd, H. A., Al-Tawfiq, J. A. and Memish, Z. A. (2016) Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virology Journal 13, 87.
[94] Moosaie, F., Davatgari, R. M., Firouzabadi, F. D., Esteghamati, S., Deravi, N., Meysamie, A., Khaloo, P., Nakhjavani, M. and Esteghamati, A. (2020) Lipoprotein(a) and Apolipoproteins as Predictors for Diabetic Retinopathy and Its Severity in Adults With Type 2 Diabetes: A Case-Cohort Study. Can J Diabetes 44, 414-421.
[95] Mortensen, E. M., Restrepo, M. I., Copeland, L. A., Pugh, J. A. and Anzueto, A. (2008) Association of hydrophilic versus lipophilic angiotensin-converting enzyme inhibitor use on pneumonia-related mortality. The American Journal of the Medical Sciences 336, 462-466.
[96] Mosleh, W., Chen, K., Pfau, S. E. and Vashist, A. (2020) Endotheliitis and Endothelial Dysfunction in Patients with COVID-19: Its Role in Thrombosis and Adverse Outcomes. Journal of Clinical Medicine 9, 1862.
[97] Muniyappa, R. and Gubbi, S. (2020) COVID-19 pandemic, coronaviruses, and diabetes mellitus. American Journal of Physiology-Endocrinology and Metabolism 318, E736-E741.
[98] Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M. and Edmonds, M. (2018) Complications of Diabetes 2017. Journal of Diabetes Research 2018, 1-4.
[99] Park, J.-E., Jung, S. and Kim, A. (2018) MERS transmission and risk factors: a systematic review. BMC Public Health 18, 574.
[100] Peiris, J. S. M., Chu, C.-M., Cheng, V. C.-C., Chan, K., Hung, I., Poon, L. L., Law, K.-I., Tang, B., Hon, T. and Chan, C. (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. The Lancet 361, 1767-1772.
[101] Pfab, T., Stirnberg, B., Sohn, A., Krause, K., Slowinski, T., Godes, M., Guthmann, F., Wauer, R., Halle, H. and Hocher, B. (2007) Impact of maternal angiotensinogen M235T polymorphism and angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure, protein excretion and fetal outcome in pregnancy. Journal of Hypertension 25, 1255-1261.
[102] Raj, V. S., Mou, H., Smits, S. L., Dekkers, D. H., Müller, M. A., Dijkman, R., Muth, D., Demmers, J. A., Zaki, A. and Fouchier, R. A. (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251-254.
[103] Rao, S., Lau, A. and So, H.-C. (2020) Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of 2019-nCov: A Mendelian Randomization analysis. medRxiv (in press).
[104] Remuzzi, A. and Remuzzi, G. (2020) COVID-19 and Italy: what next? the Lancet 395, 1225-1228.
[105] Roca-Ho, H., Riera, M., Palau, V., Pascual, J. and Soler, M. J. (2017) Characterization of ACE and ACE2 expression within different organs of the NOD mouse. International Journal of Molecular Sciences 18, 563.
[106] Romaní-Pérez, M., Outeiriño-Iglesias, V., Moya, C. M., Santisteban, P., González-Matías, L. C., Vigo, E. and Mallo, F. (2015) Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology 156, 3559-3569.
[107] Ruiz-Ortega, M., Ruperez, M., Lorenzo, O., Esteban, V., Blanco, J., Mezzano, S. and Egido, J. (2002) Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney International 62, S12-S22.
[108] Schmid-Schönbein, G., Seiffge, D., DeLano, F. A., Shen, K. and Zweifach, B. W. (1991) Leukocyte counts and activation in spontaneously hypertensive and normotensive rats. Hypertension 17, 323-330.
[109] Shi, X., Gong, E., Gao, D., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Wu, B. and Fang, W. (2005) Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. American Journal of Gastroenterology 100, 169-176.
[110] Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., Integrated Center for Obesity Centre Hospitalier Universitaire Lille Lille France, et al. (2020) High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 28, 1195-1199.
[111] Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C., Zhou, J., Liu, W., Bi, Y. and Gao, G. F. (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology 24, 490-502.
[112] Tang, N., Li, D., Wang, X. and Sun, Z. (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis 18, 844-847.
[113] Tikellis, C., Johnston, C. I., Forbes, J. M., Burns, W. C., Burrell, L. M., Risvanis, J. and Cooper, M. E. (2003) Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 41, 392-397.
[114] Tikoo, K., Patel, G., Kumar, S., Karpe, P. A., Sanghavi, M., Malek, V. and Srinivasan, K. (2015) Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochemical Pharmacology 93, 343-351.
[115] Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G. and Turner, A. J. (2000) A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry 275, 33238-33243.
[116] Toledo, J., George, L., Martinez, E., Lazaro, A., Han, W. W., Coelho, G. E., Runge Ranzinger, S. and Horstick, O. (2016) Relevance of Non-communicable Comorbidities for the Development of the Severe Forms of Dengue: A Systematic Literature Review. Plos Neglected Tropical Diseases 10, e0004284.
[117] Torabi, A., Mohammadbagheri, E., Akbari Dilmaghani, N., Bayat, A., Fathi, M., Vakili, K., Alizadeh, R., Rezaeimirghaed, O., Hajiesmaeili, M., Ramezani, M., Simani, L. and Aliaghaei, A. (2020) Proinflammatory Cytokines in the Olfactory Mucosa Result in COVID-19 Induced Anosmia. ACS Chemical Neuroscience 11, 1909-1913.
[118] Touyz, R. M., Li, H. and Delles, C. (2020) ACE2 the Janus-faced protein-from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19. Clinical Science 134, 747-750.
[119] Turner, A., Hiscox, J. and Hooper, N. (2004a) ACE2: from vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences 25, 291-294.
[120] Turner, A. J., Hiscox, J. A. and Hooper, N. M. (2004b) ACE2: from vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences 25, 291-294.
[121] Umpierrez, G. E., Isaacs, S. D., Bazargan, N., You, X., Thaler, L. M. and Kitabchi, A. E. (2002) Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. The Journal of Clinical Endocrinology and Metabolism 87, 978-982.
[122] Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J. J. V., Pfeffer, M. A. and Solomon, S. D. (2020) Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine 382, 1653-1659.
[123] Van den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., Vlasselaers, D., Ferdinande, P., Lauwers, P. and Bouillon, R. (2001) Intensive insulin therapy in critically ill patients. New England Journal of Medicine 345, 1359-1367.
[124] Van den Berghe, G., Wouters, P. J., Bouillon, R., Weekers, F., Verwaest, C., Schetz, M., Vlasselaers, D., Ferdinande, P. and Lauwers, P. (2003) Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Critical Care Medicine 31, 359-366.
[125] Wan, Y., Shang, J., Graham, R., Baric, R. S. and Li, F. (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology 94.
[126] World Health Organization. (2020) WHO ’Coronavirus disease 2019 (COVID-19) Situation Report -82’. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200411-sitrep-82-covid-19.pdf?sfvrsn=74a5d15_2 (Accessed: 11 April 2020).
[127] Wösten-van Asperen, R. M., Lutter, R., Specht, P. A., Moll, G. N., van Woensel, J. B., van der Loos, C. M., van Goor, H., Kamilic, J., Florquin, S. and Bos, A. P. (2011) Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. The Journal of Pathology 225, 618-627.
[128] Wu, C., Chen, X., Cai, Y., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C. and Zhang, Y. (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine 180, 934.
[129] Wu, Z. and McGoogan, J. M. (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA 323, 1239.
[130] Wysocki, J., Ye, M., Soler, M. J., Gurley, S. B., Xiao, H. D., Bernstein, K. E., Coffman, T. M., Chen, S. and Batlle, D. (2006) ACE and ACE2 activity in diabetic mice. Diabetes 55, 2132-2139.
[131] Xia, C., Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA, Rao, X. and Zhong, J. (2017) Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. Journal of Diabetes Research 2017, 1-6.
[132] Xiao, J., Ma, L., Gao, J., Yang, Z., Xing, X., Zhao, H., Jiao, J. and Li, G. (2004) Glucocorticoid-induced diabetes in severe acute respiratory syndrome: the impact of high dosage and duration of methylprednisolone therapy. Zhonghua Nei Ke Za Zhi 43, 179-182.
[133] Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H. and Zhu, L. (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine 8, 420-422.
[134] Yang, J.-K., Lin, S.-S., Ji, X.-J. and Guo, L.-M. (2010) Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetologica 47, 193-199.
[135] Yang, J., Feng, Y., Yuan, M., Yuan, S., Fu, H., Wu, B., Sun, G., Yang, G., Zhang, X. and Wang, L. (2006) Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabetic Medicine 23, 623-628.
[136] Yang, W., Cai, X., Han, X. and Ji, L. (2016) DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews 32, 391-404.
[137] Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S. and Shang, Y. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine 8, 475-481.
[138] Yang, Z.-Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.-P., Schwartz, O., Subbarao, K. and Nabel, G. J. (2004) pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. Journal of Virology 78, 5642-5650.
[139] Yu, C., Wong, R. S., Wu, E., Kong, S., Wong, J., Yip, G. W., Soo, Y., Chiu, M., Chan, Y. and Hui, D. (2006) Cardiovascular complications of severe acute respiratory syndrome. Postgraduate Medical Journal 82, 140-144.
[140] Zhang, J., Dong, X., Cao, Y., Yuan, Y., Yang, Y., Yan, Y., Akdis, C. A. and Gao, Y. (2020a) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75, 1730-1741.
[141] Zhang, L., Long, Y., Xiao, H., Yang, J., Toulon, P. and Zhang, Z. (2018) Use of D-dimer in oral anticoagulation therapy. International Journal of Laboratory Hematology 40, 503-507.
[142] Zhang, L., Yan, X., Fan, Q., Liu, H., Liu, X., Liu, Z. and Zhang, Z. (2020b) D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. Journal of Thrombosis and Haemostasis 18, 1324-1329.
[143] Zhang, W., Xu, Y., Liu, B., Wu, R., Yang, Y., Xiao, X. and Zhang, X. (2014) Pioglitazone Upregulates Angiotensin Converting Enzyme 2 Expression in Insulin-Sensitive Tissues in Rats with High-Fat Diet-Induced Nonalcoholic Steatohepatitis. The Scientific World Journal 2014, 1-7.
[144] Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. and Cao, B. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet 395, 1054-1062.
[145] Zhu, L., She, Z.-G., Cheng, X., Qin, J.-J., Zhang, X.-J., Cai, J., Lei, F., Wang, H., Xie, J., Wang, W., Li, H., Zhang, P., Song, X., Chen, X., Xiang, M., Zhang, C., Bai, L., Xiang, D., Chen, M.-M., Liu, Y., Yan, Y., Liu, M., Mao, W., Zou, J., Liu, L., Chen, G., Luo, P., Xiao, B., Zhang, C., Zhang, Z., Lu, Z., Wang, J., Lu, H., Xia, X., Wang, D., Liao, X., Peng, G., Ye, P., Yang, J., Yuan, Y., Huang, X., Guo, J., Zhang, B.-H. and Li, H. (2020) Association of blood glucose control and outcomes in patients with COVID-19 and Pre-existing type 2 diabetes. Cell Metabolism 31, 1068-1077.
[146] Zmora, N., Bashiardes, S., Levy, M. and Elinav, E. (2017) The role of the immune system in metabolic health and disease. Cell Metabolism 25, 506-521.
[1] Ramesh K. Goyal, Jaseela Majeed, Rajiv Tonk, Mahaveer Dhobi, Bhoomika Patel, Kalicharan Sharma, Subbu Apparsundaram. Current targets and drug candidates for prevention and treatment of SARS-CoV-2 (COVID-19) infection[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 365-384.
[2] Jun Zhang, Kristen M. Tecson, Peter A. McCullough. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 315-319.
[3] Jun Zhang, Peter A. McCullough, Kristen M. Tecson. Vitamin D deficiency in association with endothelial dysfunction: Implications for patients withCOVID-19[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 339-344.
[4] Allison Zimmerman, Dinesh Kalra. Usefulness of machine learning in COVID-19 for the detection and prognosis of cardiovascular complications[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 345-352.
[5] Ajay K. Mahenthiran, Ashorne K. Mahenthiran, Jo Mahenthiran. Cardiovascular system and COVID-19: manifestations and therapeutics[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 399-409.
[6] Kimia Vakili, Mobina Fathi, Aiyoub Pezeshgi, Ashraf Mohamadkhani, Mohammadreza Hajiesmaeili, Mostafa Rezaei-Tavirani, Fatemeh Sayehmiri. Critical complications of COVID-19: A descriptive meta-analysis study[J]. Reviews in Cardiovascular Medicine, 2020, 21(3): 433-442.
[7] Malik Bisserier, Natasha Pradhan, Lahouaria Hadri. Current and emerging therapeutic approaches to pulmonary hypertension[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 163-179.
[8] Matteo Cameli, Maria Concetta Pastore, Michael Henein, Hatem Soliman Aboumarie, Giulia Elena Mandoli, Flavio D'Ascenzi, Paolo Cameli, Federico Franchi, Sergio Mondillo, Serafina Valente. Safe performance of echocardiography during the COVID-19 pandemic: a practical guide[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 217-223.
[9] Zhi-Peng Song, Bo Yan. Potential roles of GATA binding protein 5 in cardiovascular diseases[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 253-261.
[10] Gayatri Setia, Jeffrey Tyler, Alan Kwan, Josh Faguet, Shilpa Sharma, Siddharth Singh, Babak Azarbal, Rose Tompkins, Dinora Chinchilla, Sara Ghandehari. High thrombus burden despite thrombolytic therapy in ST-elevation myocardial infarction in a patient with COVID-19[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 289-295.
[11] Peter A. McCullough, John Eidt, Janani Rangaswami, Edgar Lerma, James Tumlin, Kevin Wheelan, Nevin Katz, Norman E. Lepor, Kris Vijay, Sandeep Soman, Bhupinder Singh, Sean P. McCullough, Haley B. McCullough, Alberto Palazzuoli, Gaetano M. Ruocco, Claudio Ronco. Urgent need for individual mobile phone and institutional reporting of at home, hospitalized, and intensive care unit cases of SARS-CoV-2 (COVID-19) infection[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 1-7.
[12] Faeq Husain-Syed, Horst-Walter Birk, Khodr Tello, Manuel J. Richter, Claudio Ronco, Peter A. McCullough, Tanja Schörmann, Fiorenza Ferrari, Gökhan Yücel, Babak Yazdani, Hans-Dieter Walmrath, Werner Seeger, Henning Gall, H. Ardeschir Ghofrani. Alterations in Doppler-derived renal venous stasis index during decompensation of right heart failure and fluid overload in a patient with pulmonary hypertension[J]. Reviews in Cardiovascular Medicine, 2019, 20(4): 263-266.
[13] Sukhwinder K. Bhullar, Anureet K. Shah, Naranjan S. Dhalla. Store-operated calcium channels: Potential target for the therapy of hypertension[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 139-151.
[14] Yifan Luo, Lixiang Ren, Mingyan Jiang, Yang Chu. Anti-hypertensive efficacy of amlodipine dosing during morning versus evening: A meta-analysis[J]. Reviews in Cardiovascular Medicine, 2019, 20(2): 91-98.
[15] Davide Bolignano, Giuseppe Coppolino. Renal nerve ablation for resistant hypertension: facts, fictions and future directions[J]. Reviews in Cardiovascular Medicine, 2019, 20(1): 9-18.
No Suggested Reading articles found!