Please wait a minute...
Reviews in Cardiovascular Medicine  2019, Vol. 20 Issue (4): 267-272     DOI: 10.31083/j.rcm.2019.04.576
Special Issue: Cardiovascular disorders in chronic kidney disease
Original Research Previous articles | Next articles
Renal implications of pulmonary arterial capacitance in acute heart failure with preserved ejection fraction
Hesam Mostafavi Toroghi1, *(), Kevin Bryan Lo1, Mary Rodriguez Ziccardi1, Benjamin Horn1, Napatt Kanjanahattakij1, Erum Malik1, Jorge Penalver1, Janani Rangaswami1, 2, Shuchita Gupta3, Aman Amanullah1, 2, 3
1 Department of Internal Medicine, Albert Einstein Medical Center, 5501 Old York Rd, Philadelphia, PA 19141, USA
2 Sidney Kimmel College of Thomas Jefferson University, 1025 Walnut St, Philadelphia, PA 19107, USA
3 The Institute for Heart and Vascular Health and Cardiovascular Diseases, Einstein Healthcare Network, 5501 Old York Rd, Philadelphia, PA 19141, USA
Download:  PDF(348KB)  ( 820 ) Full text   ( 31 )
Export:  BibTeX | EndNote (RIS)      
Abstract:

Worsening renal function in patients with heart failure with preserved ejection fraction is associated with poor outcomes. Pulmonary arterial capacitance is a novel right heart catheterization derived hemodynamic metric representing pulmonary arterial tree distensibility and right ventricle afterload. Given the strong association between heart failure, pulmonary hypertension, and kidney function, the goal of this study is to investigate the correlation between Pulmonary arterial capacitance and long-term renal function in patients with heart failure with preserved ejection fraction. In this retrospective single center study, data from 951 patients with the diagnosis of heart failure, who underwent right heart catheterization were analyzed. Eight hundred and one patients with reduced ejection fraction, end-stage kidney disease on hemodialysis, acute myocardial infarction, and severe structural valvular disorders, were excluded. Pulmonary arterial capacitance was calculated as the stroke volume divided by pulmonary artery pulse pressure (mL/mmHg). Hemodynamic and clinical variables including baseline renal function were obtained at the time of the right heart catheterization, and renal function was also obtained at 3-5 years after right heart catheterization. The final cohort consisted of 150 subjects with a mean age 68 ( ± 14.2) years, 93 (62%) were female. The mean value for Pulmonary arterial capacitance was 2.82 ( ± 2.22) mL/mm Hg and the mean Glomerular Filtration Rate was 60.32 mL/min/l.73 m2 ( ± 28.36). After multivariate linear regression analysis (including baseline Estimated Glomerular Filtration Rate as one of the variates), only age and Pulmonary arterial capacitance greater than 2.22 mL/mm Hg were predictors of long term Glomerular Filtration Rate. Pulmonary arterial capacitance as a novel right heart catheterization index could be a predictor of long-term renal function in patients with heart failure with preserved ejection fraction.

Key words:  Right-heart catheterization      pulmonary arterial capacitance      renal function      heart failure     
Submitted:  14 October 2019      Accepted:  25 December 2019      Published:  30 December 2019     
Fund: 
  • Albert Einstein Medical Center
*Corresponding Author(s):  Hesam Mostafavi Toroghi     E-mail:  sam.toroghi@gmail.com

Cite this article: 

Hesam Mostafavi Toroghi, Kevin Bryan Lo, Mary Rodriguez Ziccardi, Benjamin Horn, Napatt Kanjanahattakij, Erum Malik, Jorge Penalver, Janani Rangaswami, Shuchita Gupta, Aman Amanullah. Renal implications of pulmonary arterial capacitance in acute heart failure with preserved ejection fraction. Reviews in Cardiovascular Medicine, 2019, 20(4): 267-272.

URL: 

https://rcm.imrpress.com/EN/10.31083/j.rcm.2019.04.576     OR     https://rcm.imrpress.com/EN/Y2019/V20/I4/267

Figure 1.  Flow chart of the patient selection process of our study cohort. HF: heart failure, RHC: right heart catheterization, HFpEF: heart failure with preserved ejection fraction, ESRD: end-stage renal disease, MI: myocardial infarction, COPD: chronic obstructive pulmonary disease, PAC: pulmonary arterial capacitance.

Table 1.  Baseline clinical characteristics, comorbidities, laboratory, treatments, and hemodynamic data based on the median PAC value.
Total n = 150 PAC < 2.2 mL/mmHg
n = 75
PAC ≥ 2.2
mL/mmHg n = 75
P-value
Baseline clinical data
Age (years) 68.49 ± 14.21 70.72 ± 12.64 66.25 ± 15.38 0.054
Female Sex (n, %) 93 (62%) 56 (75%) 37 (49%) 0.002*
Weight (kg) 91.18 ± 26.86 85.87 ± 24.84 96.49 ± 27.9 0.015*
Height (cm) 166.57 ± 12.4 162.35 ± 12.87 170.78 ± 10.4 0.001*
BMI (kg/m2) 33.70 ± 16.21 34.38 ± 21.19 33.02 ± 8.91 0.610
BSA (m2) 2.03 ± 0.31 1.94 ± 0.27 2.12 ± 0.33 0.001*
Comorbidities
Hypertension (n, %) 127 (85%) 67 (89%) 60 (81%) 0.173
Hyperlipidemia (n, %) 79 (53%) 39 (52%) 40 (54%) 0.870
Diabetes Mellitus (n, %) 79 (53%) 46 (61%) 33 (45%) 0.049*
Smoking (n, %) 48 (32%) 24 (32.4%) 24 (32.4%) 1.000
Atrial Fibrillation (n, %) 43 (29%) 26 (35%) 17 (23%) 0.240
CAD (n, %) 64 (43%) 35 (47%) 29 (39%) 0.409
OSA (n, %) 15 (10%) 8 (11%) 7 (9%) 1.000
COPD (n, %) 15 (10%) 7 (9%) 8 (11%) 0.432
ILD (n, %) 2 (1.3%) 1 (1%) 1 (1%) 1.000
Laboratory data
GFR (mL/min) 60.32 ± 28.36 60.21 ± 25.78 60.43 ± 30.90 0.961
GFR 3-5 years (mL/min) 55.08 ± 33.26 54.22 ± 31.37 55.83 ± 35.22 0.835
Hemodynamics
PCWP 20.44 ± 8.75 21.73 ± 9.3 19.16 ± 8.03 0.076
Cardiac Index 2.52 ± 1.06 2.06 ± 0.62 2.98 ± 1.21 0.001*
RAP 12.95 ± 7.08 14.11 ± 7.4 11.8 ± 6.59 0.046*
MAP 94.78 ± 16.60 97.7 ± 14.5 91.85 ± 8.08 0.031*
MPAP 34.35 ± 12.60 38.88 ± 11.89 29.82 ± 11.7 0.001*
Medications
Beta blocker 106 (71%) 58 (77%) 48 (64%) 0.074
Loop diuretics 96 (64%) 50 (67%) 46 (61%) 0.498
Spironolactone 14 (9%) 6 (8%) 8 (11%) 0.780
ACE/ARB 56 (37%) 28 (37%) 28 (37%) 1.000
nitrates 29 (19%) 18 (24%) 11 (15%) 0.142
Table 2.  Regression analysis showing variables predictive of GFR on admission, GFR on 3-5 years, and change in GFR.
Predictive of GFR on admission Predictive of GFR 3-5 year Predictive of difference of GFR between admission and 3-5 years
P-value CI P-value CI P-value CI
Baseline clinical data
Age (years) 0.781 -0.45 to 0.34 0.0001 -1.47 to -0.46 0.0001 0.46 to 1.47
Female Sex (n, %) 0.017 -22.96 to -2.33 0.085 -1.58 to 24.03 0.085 -24.03 to 1.58
Race, Black referrant
Race, White 0.933 -11.9 to 10.93 0.352 -8.21 to 22.72 0.352 -22.72 to 8.21
Race, Hispanic 0.873 -24.32 to 28.6 0.519 -46.31 to 23.62 0.519 -23.62 to 46.31
Race, Other 0.551 -42.82 to 22.95 0.080 -5.35 to 92.94 0.080 -92.94 to 5.35
Comorbidities
Hypertension 0.171 -24.73 to 4.45 0.219 -6.23 to 26.66 0.219 -26.66 to 6.233
Diabetes Mellitus 0.191 -16.99 to 3.42 0.287 -19.1 to 5.75 0.287 -5.75 to 19.10
Hemodynamics
PCWP 0.954 -0.69 to 0.65 0.984 -0.80 to 0.82 0.984 -0.821 to 0.804
RAP 0.763 -1.03 to 0.76 0.736 -1.44 to 1.03 0.736 -1.03 to 1.44
Cardiac Index 0.622 -6.29 to 3.78 0.158 -10.85 to 1.80 0.158 -1.80 to 10.85
PAC ≥ 2.2 mL/mmHg 0.394 -15.39 to 6.09 0.044* 0.338 to 26.3 0.044* -26.3 to -0.338
Baseline GFR mL/min/l 0.0001* 0.608 to 1.001 0.051 -0.001 to 3.92
[1] Al-Naamani, N., Preston, I. R., Paulus, J. K., Hill, N. S. and Roberts, K. E. (2015) Pulmonary arterial capacitance is an important predictor of mortality in heart failure with a preserved ejection fraction. JACC Heart Failure 3, 467-474.
doi: 10.1016/j.jchf.2015.01.013 pmid: 26046840
[2] Alves, J. L., Jr., Oleas, F. G. and Souza, R. (2017) Pulmonary hypertension: definition, classification, and diagnosis. Seminars in Respiratory and Critical Care Medicine 38, 561-570.
doi: 10.1055/s-0037-1606577 pmid: 29032560
[3] Bellofiore, A. and Chesler, N. C. (2013) Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Annals of Biomedical Engineering 41, 1384-1398.
doi: 10.1007/s10439-013-0752-3
[4] Blair, J. E., Huffman, M. and Shah, S. J. (2013) Heart failure in north america. Current Cardiology Reviews 9, 128-146.
doi: 10.2174/1573403x11309020006 pmid: 23597296
[5] Cockcroft, D. W. and Gault, M. H. (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16, 31-41.
doi: 10.1159/000180580 pmid: 1244564
[6] Dragu, R., Rispler, S., Habib, M., Sholy, H., Hammerman, H., Galie, N. and Aronson, D. (2015) Pulmonary arterial capacitance in patients with heart failure and reactive pulmonary hypertension. European Journal of Heart Failure 17, 74-80.
doi: 10.1002/ejhf.192 pmid: 25388783
[7] Dupont, M., Mullens, W., Skouri, H. N., Abrahams, Z., Wu, Y., Taylor, D. O., Starling, R. C. and Tang, W. H. (2012) Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circulation: Heart Failure 5, 778-785.
doi: 10.1161/CIRCHEARTFAILURE.112.968511 pmid: 23087402
[8] Gajanana, D., Mezue, K., George, J. C., Purushottam, B., Wheeler, D., Morris, D. L., Rangaswami, J. and Figueredo, V. M. (2017) Effects of pulmonary hypertension on kidney function. Clinical Pulmonary Medicine 24, 26-28.
doi: 10.1097/MNH.0000000000000586 pmid: 31895165
[9] Galie, N., Humbert, M., Vachiery, J. L., Gibbs, S., Lang, I., Torbicki, A., Simonneau, G., Peacock, A., Vonk Noordegraaf, A., Beghetti, M., Ghofrani, A., Gomez Sanchez, M. A., Hansmann, G., Klepetko, W., Lancellotti, P., Matucci, M., McDonagh, T., Pierard, L. A., Trindade, P. T., Zompatori, M. and Hoeper, M. (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Respiratory Journal 46, 903-975.
doi: 10.1183/13993003.01032-2015 pmid: 26318161
[10] Grande, D., Gioia, M. I., Terlizzese, P. and Iacoviello, M. (2018) Heart failure and kidney disease. Advances in Experimental Medicine and Biology 1067, 219-238.
doi: 10.1007/5584_2017_126 pmid: 29159789
[11] Guazzi, M. and Borlaug, B. A. (2012) Pulmonary hypertension due to left heart disease. Circulation 126, 975-990.
doi: 10.1161/CIRCULATIONAHA.111.085761 pmid: 22908015
[12] Guha, A., Amione-Guerra, J. and Park, M. H. (2016) Epidemiology of pulmonary hypertension in left heart disease. Progress in Cardiovascular Diseases 59, 3-10.
doi: 10.1016/j.pcad.2016.07.001 pmid: 27402130
[13] Kanjanahattakij, N., Sirinvaravong, N., Aguilar, F., Agrawal, A., Krishnamoorthy, P. and Gupta, S. (2018) High right ventricular stroke work index is associated with worse kidney function in patients with heart failure with preserved ejection fraction. Cardiorenal Medicine 8, 123-129.
doi: 10.1159/000486629 pmid: 29617005
[14] Lekavich, C. L. and Barksdale, D. J. (2016) A critical evaluation of the representation of black patients with heart failure and preserved ejection fraction in clinical trials: A literature review. Journal of Cardiovascular Nursing 31, 202-208.
doi: 10.1097/JCN.0000000000000237 pmid: 25658183
[15] Lo, K. B., Mezue, K., Ram, P., Goyal, A., Shah, M., Krishnamoorthy, P., Gupta, S., Pressman, G. S. and Rangaswami, J. (2019) Echocardiographic and hemodynamic parameters associated with diminishing renal filtration among patients with heart failure with preserved ejection fraction. Cardiorenal Medicine 9, 83-91.
doi: 10.1159/000494089 pmid: 30544108
[16] Medrek, S. K., Kloefkorn, C., Nguyen, D. T. M., Graviss, E. A., Frost, A. E. and Safdar, Z. (2017) Longitudinal change in pulmonary arterial capacitance as an indicator of prognosis and response to therapy and in pulmonary arterial hypertension. Pulmonary Circulation 7, 399-408.
doi: 10.1177/2045893217698715 pmid: 28597758
[17] Mukherjee, M., Sharma, K., Madrazo, J. A., Tedford, R. J., Russell, S. D. and Hays, A. G. (2017) Right-sided cardiac dysfunction in heart failure with preserved ejection fraction and worsening renal function. American Journal of Cardiology 120, 274-278.
doi: 10.1016/j.amjcard.2017.04.019 pmid: 28528661
[18] Mullens, W., Abrahams, Z., Francis, G. S., Sokos, G., Taylor, D. O., Starling, R. C., Young, J. B. and Tang, W. H. W. (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. Journal of the American College of Cardiology 53, 589-596.
doi: 10.1016/j.jacc.2008.05.068 pmid: 19215833
[19] Navaneethan, S. D., Wehbe, E., Heresi, G. A., Gaur, V., Minai, O. A., Arrigain, S., Nally, J. V. Jr., Schold, J. D., Rahman, M. and Dweik, R. A. (2014) Presence and outcomes of kidney disease in patients with pulmonary hypertension. Clinical Journal of the American Society of Nephrology 9, 855-863.
doi: 10.2215/CJN.10191013
[20] Papolos, A., Fan, E., Wagle, R. R., Foster, E., Boyle, A. J., Yeghiazarians, Y., MacGregor, J. S., Grossman, W., Schiller, N. B., Ganz, P. and Tison, G. H. (2019) Echocardiographic determination of pulmonary arterial capacitance. The International Journal of Cardiovascular Imaging 35, 1581-1586
doi: 10.1007/s10554-019-01595-9 pmid: 30968263
[21] Pellegrini, P., Rossi, A., Pasotti, M., Raineri, C., Cicoira, M., Bonapace, S., Dini, F. L., Temporelli, P. L., Vassanelli, C., Vanderpool, R., Naeije, R. and Ghio, S. (2014) Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest 145, 1064-1070.
doi: 10.1378/chest.13-1510
[22] Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., Falk, V., Gonzalez-Juanatey, J. R., Harjola, V. P., Jankowska, E. A., Jessup, M., Linde, C., Nihoyannopoulos, P., Parissis, J. T., Pieske, B., Riley, J. P., Rosano, G. M. C., Ruilope, L. M., Ruschitzka, F., Rutten, F. H. and van der Meer, P. (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal 37, 2129-2200.
doi: 10.1093/eurheartj/ehw128 pmid: 27206819
[23] Rangaswami, J., Bhalla, V., Blair, J. E. A., Chang, T. I., Costa, S., Lentine, K. L., Lerma, E. V., Mezue, K., Molitch, M., Mullens, W., Ronco, C., Tang, W. H. W. and McCullough, P. A. (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the american heart association. Circulation 139, e840-e878.
doi: 10.1161/CIR.0000000000000664 pmid: 30852913
[24] Sato, Y. U., Yoshihisa, A., Oikawa, M., Nagai, T., Yoshikawa, T., Saito, Y., Yamamoto, K., Takeishi, Y. and Anzai, T. (2019) Prognostic impact of worsening renal function in hospitalized heart failure patients with preserved ejection fraction: A report from the JASPER registry. Journal of Cardiac Failure 25, 231-232.
doi: 10.1016/j.cardfail.2019.04.009 pmid: 31004785
[25] Schefold, J. C., Filippatos, G., Hasenfuss, G., Anker, S. D. and von Haehling, S. (2016) Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nature Reviews Nephrology 12, 610-623.
doi: 10.1038/nrneph.2016.113 pmid: 27573728
[26] Sharma, K., Hill, T., Grams, M., Daya, N. R., Hays, A. G., Fine, D., Thiemann, D. R., Weiss, R. G., Tedford, R. J., Kass, D. A., Schulman, S. P. and Russell, S. D. (2015) Outcomes and worsening renal function in patients hospitalized with heart failure with preserved ejection fraction. American Journal of Cardiology 116, 1534-1540.
doi: 10.1016/j.amjcard.2015.08.019 pmid: 26410603
[27] Takatsuki, S., Nakayama, T., Ikehara, S., Matsuura, H., Ivy, D. D. and Saji, T. (2017) Pulmonary Arterial Capacitance Index Is a Strong Predictor for Adverse Outcome in Children with Idiopathic and Heritable Pulmonary Arterial Hypertension. Journal of Pediatrics 180, 75-79.e72.
doi: 10.1016/j.jpeds.2016.10.003 pmid: 27810156
[28] Tedford, R. J., Hassoun, P. M., Mathai, S. C., Girgis, R. E., Russell, S. D., Thiemann, D. R., Cingolani, O. H., Mudd, J. O., Borlaug, B. A., Redfield, M. M., Lederer, D. J. and Kass, D. A. (2012) Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 125, 289-297.
doi: 10.1161/CIRCULATIONAHA.111.051540
[29] Ter Maaten, J. M. and Voors, A. A. (2016) Renal dysfunction in heart failure with a preserved ejection fraction: cause or consequence? European Journal of Heart Failure 18, 113-114.
doi: 10.1002/ejhf.461 pmid: 26707362
[30] Unger, E. D., Dubin, R. F., Deo, R., Daruwalla, V., Friedman, J. L., Medina, C., Beussink, L., Freed, B. H. and Shah, S. J. (2016) Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. European Journal of Heart Failure 18, 103-112.
doi: 10.1002/ejhf.445 pmid: 26635076
[31] Vonk-Noordegraaf, A., Haddad, F., Chin, K. M., Forfia, P. R., Kawut, S. M., Lumens, J., Naeije, R., Newman, J., Oudiz, R. J., Provencher, S., Torbicki, A., Voelkel, N. F. and Hassoun, P. M. (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. Journal of the American College of Cardiology 62, D22-D33.
doi: 10.1016/j.jacc.2013.10.027
[1] Chiara Minà, Laura Ajello, Gabriele Di Gesaro, Calogero Falletta, Francesco Clemenza. Hyperkalemia in heart failure: current treatment and new therapeutic perspectives[J]. Reviews in Cardiovascular Medicine, 2020, 21(2): 241-252.
[2] Amir Kazory, Maria Rosa Costanzo. The dynamic relationship between serum chloride and cardiorenal syndrome[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 25-29.
[3] Megan S. Joseph, Maryse Palardy, Nicole M. Bhave. Management of heart failure in patients with end-stage kidney disease on maintenance dialysis: a practical guide[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 31-39.
[4] Xiaogen Chen, Chunna Jin, Lan Xie, Meixiang Xiang. LCZ696 and preservation of renal function in heart failure: A meta-analysis of 6 randomized trials[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 113-118.
[5] Akanksha Agrawal, Hafeez Ul Hassan Virk, Iqra Riaz, Deepanshu Jain, Byomesh Tripathi, Chayakrit Krittanawong, Benham Bozorgnia, Vincent Figueredo, Peter A. McCullough, Janani Rangaswami. Predictors of 30-day re-admissions in patients with infective endocarditis: a national population based cohort study[J]. Reviews in Cardiovascular Medicine, 2020, 21(1): 123-127.
[6] Girish Singhania, Abutaleb A. Ejaz, Peter A. McCullough, Aaron Y. Kluger, Saravanan Balamuthusamy, Bhagwan Dass, Namrata Singhania, Adhish Agarwal. Continuation of Chronic Heart Failure Therapies During Heart Failure Hospitalization - a Review[J]. Reviews in Cardiovascular Medicine, 2019, 20(3): 111-120.
[7] Victoria E. Tril, Alla V. Burlutskaya, Lily V. Polischuk. Metabolic cardiomyopathy in pediatrics[J]. Reviews in Cardiovascular Medicine, 2019, 20(2): 73-80.
[8] Janani Rangaswami, Sandeep Soman, Peter A. McCullough. Key updates in Cardio-Nephrology from 2018: springboard to a bright Future[J]. Reviews in Cardiovascular Medicine, 2018, 19(4): 113-116.
[9] John E. Dudzinsk, Eric Gnall, Peter R. Kowey. A Review of percutaneous mechanical support devices and strategies[J]. Reviews in Cardiovascular Medicine, 2018, 19(1): 21-26.
[10] Nasrien E. Ibrahim, Akshay S. Desai, Jagmeet P. Singh, James L. Januzzi Jr. Advances in Heart Failure Management: Improving Outcomes With Innovation[J]. Reviews in Cardiovascular Medicine, 2017, 18(S1): 1-16.
[11] Saberio Lo Presti, Christos G. Mihos, Evin Yucel, Sofia A. Horvath, Orlando Santana. A Focused Review on the Pathophysiology, Diagnosis, and Management of Cardiac Amyloidosis[J]. Reviews in Cardiovascular Medicine, 2017, 18(4): 123-133.
[12] Claudio Ronco, Federico Ronco, Peter A. McCullough. A Call to Action to Develop Integrated Curricula in Cardiorenal Medicine[J]. Reviews in Cardiovascular Medicine, 2017, 18(3): 93-99.
[13] Jürgen Kuschyk, Axel Kloppe, Stephan Schmidt-Schweda, Hendrik Bonnemeier, Benny Rousso, Susanne Rger. Cardiac Contractility Modulation: A Technical Guide for Device Implantation[J]. Reviews in Cardiovascular Medicine, 2017, 18(1): 1-13.
[14] Nasrien E. Ibrahim, Akshay S. Desai, Jagmeet P. Singh, James L. Januzzi Jr. Heart Failure University 2015: Presentation Summaries[J]. Reviews in Cardiovascular Medicine, 2016, 17(S1): 1-8.
[15] Barry H. Greenberg. A Treatment Approach for Patients With Chronic Systolic Heart Failure[J]. Reviews in Cardiovascular Medicine, 2016, 17(S1): 22-29.
No Suggested Reading articles found!